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Author Summary

When reasoning about relationships between objects, events, or people, humans can readily use previous
experiences to infer relations that they have never encountered before. For example, if Anna beats Bruce at
tennis, and Bruce beats Clara, then one can predict that Anna will likely also beat Clara. Human learning in such
‘transitive inference’ problems tends to be winner-biased — that is, upon observing Anna’s victory over Bruce, a
spectator would be more likely to attribute this outcome to Anna’s skill than to Bruce’s lack thereof. However, in
a constantly changing world whose comparative relations are rarely static, humans must also be able to infer how
changes in the outcomes of certain comparisons bear on other relationships within a transitive hierarchy.
Combining behavioural testing and computational modelling, we show that a learning strategy that preferentially
focuses on the winners of comparisons induces greater flexibility for certain types of hierarchy changes than for
others. In addition, we provide evidence that humans may dynamically adjust their degree of learning asymmetry

according to the current strength of their beliefs about the relations under comparison.

Abstract

Humans and other animals can generalise from local to global relationships in a transitive manner. Recent research
has shown that asymmetrically biased learning, where beliefs about only the winners (or losers) of local
comparisons are updated, is well-suited for inferring relational structures from sparse feedback. However, less is
known about how belief-updating biases intersect with humans’ capacity to adapt to changes in relational
structure, where re-valuing an item may have downstream implications for inferential knowledge pertaining to
unchanged items. We designed a transitive inference paradigm involving one of two possible changepoints for
which an asymmetric (winner- or loser-biased) learning policy was more or less optimal. Participants (N=83)
exhibited differential sensitivity to changes in relational structure: whereas participants readily learned that a
hitherto low-ranking item increased its rank, moving a high-ranking item down the hierarchy impaired
downstream inferential knowledge. Behaviour best captured by an adaptive reinforcement learning model which
exhibited a predominantly winner-biased learning policy but also modulated its degree of asymmetry as a function
of its choice preference strength. Our results indicate that asymmetric learning not only accounts for efficient
inference of latent relational structures, but also for differences in the ease with which learners accommodate

structural changes.

Introduction

Humans readily learn how items rank on a variety of latent scales, such as those pertaining to hedonic or economic
value, or social influence. Such representations of rank permit novel inferences of indirectly related states or
entities. For instance, knowing that A<B and B<C enables one to infer, through transitive inference (Tl), that A<C.

Tl has been widely studied in humans, non-human primates, rats and birds alike [1-4]. Under Tl learning regimes,
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3
training trials offer participants trial-and-error feedback about pairwise comparisons between items of
neighbouring rank, which must then be used to infer unseen test relations between non-neighbouring items. In
requiring agents to use the outcomes of pairwise comparisons to update their estimates of the rankings within a
linear set, Tl paradigms lend themselves to the application of simple reinforcement learning (RL) frameworks that
model the influence of choice feedback on the subjective value of the compared items. Recent work adopting this
approach demonstrated that Tl learning is characterised by, and indeed benefits from, an asymmetric policy under
which either the winner (or the loser) of a pair is preferentially updated [5]. Specifically, this benefit emerged in
simple RL models furnished with separable, or ‘asymmetric’ learning rates for updating winners and losers, with
most participants displaying a bias towards updating winners. This cognitive distortion during inferential learning
fits into a wider body of literature on human biases towards positive [6,7] or confirmatory feedback signals [8—
11].

The constantly changing nature of an agent’s environment necessitates that any capacity for relational learning
must exhibit adaptability, while also ensuring robustness [12]. The learning dynamics underlying humans’ ability
to adapt to volatile reward environments have been studied in tasks involving changepoints or reversals [13—15].
Likewise, sensory preconditioning paradigms have been used to investigate the conditions under which relational
representations are retrospectively re-evaluated via relearning associations between rewarded and indirectly
related stimuli, or through inference at the time of choice [16,17]. These studies have demonstrated humans’
ability to infer how changes in local reward feedback pertain to indirectly related stimuli, underscoring the utility

of changepoint manipulations in probing inferential learning capabilities.

Studying changepoints in larger relational structures allows one to investigate how agents rapidly modify existing
knowledge in response to minimal new information [2,18]. Less is known, however, about how such ‘few-shot’
local relational changes impact downstream inferential knowledge, nor how this capacity to adapt to changes in
relational structure intersects with well-documented belief-updating biases in humans. Consider a sports league
where a spectator learns how the teams rank with respect to one another based on the outcomes of head-to-
head matches between them. Halfway through the season, the unexpected loss of the reigning champions against
a team sitting at the bottom of the hierarchy may be indicative of the former’s fall from grace, and/or the latter’s
resurgence. Ascertaining which team’s ranking has changed will thus determine how much one needs to update
one’s predictions about how this team will fare against others in the league, while ensuring minimal disruption to
knowledge pertaining to the relations between teams whose performance remains unchanged (Fig 1A).
Interestingly, a corollary of the asymmetric RL framework is that the ease with which such changes in relational
structure are accommodated, and thus any resultant impact on downstream inferential knowledge, should vary
as a function of the asymmetry in an agent’s learning policy (see Fig 1C and S1 for simulations). If humans are

biased towards preferentially increasing their estimates of winners, then the sudden decline of the hitherto best
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Fig 1. Experimental paradigm and model simulations. A) Example ‘cnarciness’ rankings of a set of seven items in an ordinal hierarchy. After
three blocks, the ground truth structure changed in one of two possible ways: in the ‘down’ group (blue), the most cnarcy item i, (here, the
telephone) moved to the bottom of the hierarchy, whereas in the ‘up’ group (orange), the least cnarcy item i, (here, the scarf) moved to
the top of the hierarchy. B) On each trial, participants were asked to choose which of two items they believed to be the most cnarcy. Binary
feedback was delivered on adjacent trials containing items neighbouring in rank (green), while Tl comparisons between non-adjacent items
offered no feedback (red). C) Simulated item value estimates ( ‘Q values’) under the symmetric agent Q-symm (top row) and the asymmetric
agent Q-asymm (bottom row) for the ‘up’ and ‘down’ experimental conditions (left and right columns, respectively). Red shaded half of
each panel represents the post-changepoint phase of the experiment. Whereas non-anchor item value estimates are equally discriminable
following both changepoints under Q-symm’s symmetric learning policy, Q-asymm predicts impaired discriminability of item values in the
‘down’ condition relative to the ‘up’ condition (cf. Fig S1). Models were simulated using parameter ranges consistent with participant
learning asymmetries reported by Ciranka et al. [5].

team to the bottom of the leaderboard should be less readily accommodated than the rapid ascendency of the
worst team to the top of the table. The relative difficulty with which this former change in ground truth structure

is learned would also, in turn, reduce the discriminability of mid-table teams whose rankings remain unchanged,

and thus disrupt the agent’s inferential knowledge with respect to the middle of the transitive hierarchy.

Accordingly, there is evidence to suggest that the preferential integration of positive reward prediction errors can

lead to choice inertia when the best and worst options in a two-armed bandit are flipped [19-21]. Likewise,
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5
humans are more reluctant to revise their subjective beliefs about the quality of a deteriorating foraging
environment, relative to an environment whose reward rate improves [22]. While these studies support the idea
that positively biased agents are more sensitive to positive changes in the value of options and reward
environments, the prediction that the biased reorganisation of relational knowledge should have a downstream
impact on unchanged elements of a transitive hierarchy remains untested. Moreover, while these predictions are
made under the assumption of a static degree of learning asymmetry, introducing a changepoint in a Tl learning
paradigm also allows one to explore whether learning asymmetries may dynamically adjust or even reverse in a
task-dependent manner, a possibility for which empirical evidence in other learning regimes is mixed [23,24; but
see 25].

Here, we therefore sought to investigate whether biased learning policies confer different levels of (in-)flexibility
to changes in an environment’s relational structure. Participants (N=83) performed a Tl paradigm involving one of
two possible changepoints for which a winner-biased learning policy was more or less optimal. In addition to
replicating previously observed learning asymmetries in the pre-changepoint task phase, we found evidence
supporting our model prediction that such biased learning strategies differentially advantage agents’ ability to
accommodate directional shifts in the environment’s underlying relational structure. Computational modelling of
behaviour further revealed that such differential sensitivity was best captured by an extension of our asymmetric
RL model whose degree of learning rate asymmetry varied as a function of the strength of its choice preference.
We thus provide a parsimonious account for how learning rate asymmetries may dynamically adapt to task

conditions, unifying our present findings with previous research into belief-updating biases.

Results

Changepoint Tl Paradigm

Participants (N=83) performed a computerised task in which they were, on each trial, presented with two items
drawn from a set of seven iy, is,... iz, and instructed to choose the item that they thought was more ‘cnarcy’ than
the other using a button press. The relative cnarciness of each item was established at the beginning of the
experiment by randomly assigning a ground truth rank from 1-7 to each item, such that i; and iy represented the
least and most cnarcy items respectively. On ‘adjacent’ trials comparing items with neighbouring ranks,
participants received deterministic feedback about whether they had correctly/incorrectly chosen the more
cnarcy item. In contrast, on ‘TI’ trials comparing non-neighbour items, participants did not receive any feedback.
Thus, participants were required to use sparse feedback from pairwise comparisons between adjacently ranked

items to infer the transitive hierarchy governing the item set (Fig 1A-B).

Adjacent and Tl trials were randomly interleaved within each of six blocks, allowing us to examine the evolution

of Tl over time. Critically, after the third block, a minimal change in the items’ hierarchy was introduced: in the
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6
‘up’ group of participants (N=39), the hitherto lowest-ranking item i; moved up the hierarchy to become the
highest-ranking item, while in the ‘down’ group (N=44), the highest-ranking item i; moved down to become the
lowest-ranking item. In both groups, the relations between all other items remained exactly as they were before,
such that the new ranking of item-IDs from lowest to highest could be represented as 7123456 in the ‘down’
group, and 2345671 in the ‘up’ group. Since participants only received choice feedback for adjacently ranked
items, this change in the underlying ground truth only resulted in minor changes in the feedback received by each
group. Specifically, on trials comparing the newly adjacent items i; and iz, participants in both groups received
new feedback consistent with i;<i;. The only difference between the two groups was in the two comparisons for
which feedback was removed as a result of the rank change: 'down' participants no longer received feedback on
trials comparing is vs. iz, whereas 'up' participants no longer received feedback on trials comparing i; vs. i, since
these pairs of items were no longer adjacently ranked in each case. Thus, the objective changes in the underlying
hierarchy could only possibly be inferred on the basis of two pieces of information: 1) the newly introduced i-<i;

relation, 2) the persistence or omission of the i;<i, or ig<i7 relation.

Simulations

Following Ciranka et al. [5], we simulated relational learning in our Tl paradigm using simple RL models that
updated the value (i.e. ‘cnarciness’) estimates Q of winning and losing items x and y, respectively, following choice

feedback under a modified Rescorla-Wagner updating rule [26]:

Qi+1(7) = Q(x) + a+[1 — di(z,y) — Q()] Eq. 1

Qir1(y) = Qu(y) +a” [-1+di(z,y) — Qi(y)] Eq.2

,Where a*and a" are the learning rates for winners and losers respectively. Separating these learning rates allowed
the model to implement varying degrees of symmetry/asymmetry in its learning policy. We defined the symmetric
model Q-symm as an agent for whom a* = g, meaning the agent increased and decreased its value estimates for
winners and losers of each choice outcome respectively by equal amounts. In contrast, we defined the asymmetric
model Q-asymm as an agent whose learning rates a*and a could freely vary. In the case where a* > a’, the agent
was ‘winner-biased’, disproportionately increasing its value estimate for a comparison’s winner relative to its

loser, whereas the agent was ‘loser-biased’ if a* < a".

Value updates were scaled by the relative difference between Qi(x) and Q:(y), as represented by the di(x,y) term
in Egs. 1-2 (see Eq. 4 in Materials and Methods, ‘Behavioural Models’). We modelled the probability of choosing
ix>iyas a sigmoid function of the difference between the estimated item values, scaled by a noise or ‘temperature’

parameter 7 (see Eq. 5 in Materials and Methods, ‘Behavioural Models’).
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7
We first present simulations of the symmetric and asymmetric RL agents Q-symm and Q-asymm, respectively, in
order to derive model-based predictions for how humans should behave in our changepoint Tl paradigm (Fig 1C
and S1). We simulated model performance over a range of parameter values matching those previously estimated
to fit human Tl behaviour by Ciranka et al. [5], where participants tended to exhibit a winner-biased learning policy
(i.e. a* > a) when fitted with Q-asymm. Preferentially updating winners in this way leads to compression of Q-
asymm’s latent value structure before the changepoint, such that pairs of higher valued items are less
discriminable than lower valued items. This reduced sensitivity towards larger values is a signature of asymmetry

in relational learning. In contrast, the symmetric agent Q-symm exhibits no such compression (for details, see [5]).

Interestingly, Q-asymm’s asymmetric learning policy predicts a difference in how efficiently it should adapt to our
changepoint manipulation in the ‘up’ condition relative to the ‘down’ condition (Fig 1C and S1). If learning is biased
towards winners, the changepoint in the ‘up’ condition should be easily accommodated, since Q-asymm
selectively and appropriately increases its value estimate for i; without needing to update any other items. On the
other hand, in the ‘down’ condition, Q-asymm’s initial tendency to increase its estimate for i; over-inflates this
item’s value, and underestimates i;'s decline in value. In contrast, Q-symm’s proportionate updating of winners
and losers means that it will adapt to these two objective changes in the underlying ground truth with equal
efficiency. Thus, if inferential learning is characterised by an asymmetric, winner-biased learning policy, then this
yields the empirical prediction that humans should more efficiently adapt to the change in relational structure in

the ‘up’ condition than in the ‘down’ condition.

Value Compression

Focusing first on participants’ pre-changepoint behaviour (that is, all trials preceding the first i;<i; trial in the fourth
block), we confirmed that participants not only learned the cnarciness relations between items of neighbouring
rank, but also used the feedback from these trials to accomplish Tl (Fig 2, leftmost column). Participants in both
groups exhibited above-chance accuracy both on pre-changepoint trials involving adjacent items ('up': mean
accuracy = 0.67 £ 0.01 SE, t(38) = 12.94, p < .001; 'down': mean accuracy = 0.65 + 0.01 SE, t(43) = 10.35, p <.001),
and on pre-changepoint Tl trials (‘'up': mean accuracy = 0.73 + 0.02 SE, t(38) = 13.22, p < .001; 'down': mean
accuracy = 0.75 £ 0.01 SE, t(43) = 16.67, p < .001). In both groups, we also found evidence for the widely observed
‘symbolic distance effect’ [27,28] in both pre-changepoint accuracy and reaction time (RT) data, such that greater
ordinal distance between comparanda on Tl trials was associated with higher accuracy ('up': 6 = 0.04, t(38) = 8.30,
p < .001; 'down': 8 = 0.05, t(43) = 11.07, p < .001) and faster responses (‘up': 8 = -0.03, t(38) = -4.11, p < .001;
'down": 8 = -0.03, t(43) = -5.24, p < .001).

We next examined the extent to which participants’ choice behaviour in the pre-changepoint period may have
been reflective of a compressed latent value structure, a key signature of an asymmetric learning policy. Inspecting

participants’ pairwise choice matrices (Fig 3A, left panels) showed evidence of value compression, such that lower-
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Fig 2. Tl accuracy over the course of experiment in humans and fitted models. Mean accuracy for Tl pairs was calculated using a sliding
window of 100 trials. Red shaded half of each panel represents the post-changepoint phase of the experiment. Dark blue, purple and pink
colours respectively refer to low, medium, and high-valued Tl comparisons, excluding anchors (see choice matrix in legend). Humans
(leftmost column) exhibited a differential impact of the changepoint on Tl performance: whereas accuracy continued to improve in the ‘up’
group (upper leftmost panel), post-changepoint accuracy was disrupted in the ‘down’ group (lower leftmost panel). Simulating each
candidate model using each participant’s best-fitting parameters revealed that whereas the asymmetric and adaptive models Q-asymm
and Q-adapt (third and fourth columns, respectively) qualitatively reproduced this interaction effect, the symmetric model Q-symm
performed equally well in both conditions.

valued Tl pairs (that is, pairs of items closer towards the top-left corner of the choice matrix) tended to be judged
more accurately than higher-valued Tl pairs (that is, pairs of items closer towards the bottom-right corner of the
choice matrix). We quantified the slope of this compression effect using linear regression (Fig 4A and S2).
Participants in both groups tended to exhibit asymmetry slopes significantly below 0, such that increases in
combined pair value on Tl trials were associated with a decline in accuracy (‘'up': mean 6 =-0.02 £ 0.01 SE, t(38) =
-3.39, p < .001; 'down': mean 8 = -0.02 + 0.01 SE, t(43) = -3.62, p < .001). This degree of asymmetry did not
significantly differ between groups (t(81) =0.10, p =.918). In line with previous work, we therefore found evidence
that during the initial pre-changepoint phase, participants acquired a compressed value structure, consistent with

an asymmetric learning strategy.

Differential Impact of Changepoint on Tl Performance

Turning to post-changepoint behaviour, we examined how effectively participants accommodated the different
shifts in the ranking of one of the anchor items (i.e. i; or i;) while preserving their knowledge about the remaining
items (Fig 2, leftmost column). To isolate the impact of each changepoint on downstream inferential knowledge,

and to avoid any skewing effect of pre-changepoint preferences for the moved anchor items, we focused on
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Fig 3A-B. Choice matrices for humans (left panels) and the best-fitting model Q-adapt (right panels). A) Mean probability of choosing the
correct item for each possible pairing, as represented by the colour-bar. Top row of panels displays pre-changepoint data collapsed across
‘up’ and ‘down’ participants, while the bottom row of panels splits post-changepoint data by group. B) Pre vs. post-changepoint change in
P(x<y), i.e. the difference in preference for item y (matrix rows) over item x (matrix columns) from one changepoint to the next (note the
change in metric compared to A). Lighter colours indicate that the agent’s preference for item y over x has increased, while darker colours
indicate that it has decreased. Colour-bar value range was narrowed between -0.12 and 0.12 to improve legibility of differences among
non-anchor pairs.

comparisons involving non-anchor items whose rank position had not changed in either group (i.e. from i to is).
Post-changepoint non-anchor accuracy was significantly above chance in both groups for adjacent pairs (‘up':
mean accuracy = 0.80 + 0.02 SE, t(38) = 12.10, p < .001; 'down': mean accuracy = 0.73 + 0.03 SE, t(43) = 8.48, p <
.001), and for Tl pairs (‘up': mean accuracy = 0.74 + 0.03 SE, t(38) = 7.03, p < .001; 'down': mean accuracy =0.70 £
0.03 SE, t(43) = 6.37, p < .001). To evaluate how accuracy developed from one phase of the experiment to the
next, and whether these effects differed between groups, we conducted a series of 2 x 2 mixed ANOVAs with
changepoint (pre vs. post) as a within-subjects factor, and direction (‘up’ vs. ‘down’) as a between-subjects factor.
For adjacent pairs, we observed a significant main effect of changepoint (F(1,81) = 83.13, p < .001), reflecting a
significant increase in accuracy from the first to the second half of the experiment (pre-changepoint: mean
accuracy = 0.62 + 0.01 SE; post-changepoint: mean accuracy = 0.76 + 0.02 SE). Adjacent trial accuracy did not

significantly differ between direction groups across the whole experiment (‘up': mean accuracy = 0.72 + 0.02 SE;
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Fig 4A-D. Model-agnostic and model-estimated learning asymmetry. A) The model-agnostic measure of participants’ learning asymmetry
is the slope of the relationship between Tl accuracy and combined pair value on all pre-changepoint trials (see also Fig S2). Participants
with negative slopes are designated as winner-biased (see in-text legend for percentages). B) In contrast, the Q-asymm-based asymmetry
measure refers to the normalised difference in best-fitting learning rates, where -1, 0 and +1 values for A indicate full loser bias, symmetry,
and full winner bias respectively. Whereas ‘up’ participants tended to be strongly winner-biased when Q-asymm was fit to trials from the
whole experiment (i.e. strong left-skew in right panel), ‘down’ participants were estimated to be more evenly split between winner- and
loser-biased (i.e. bimodal distribution in left panel). The proportion of participants designated as winner- or loser-biased in the ‘down’
group according to this model-based metric therefore substantially deviated from that according to the model-agnostic metric in A (see in-
plot percentages). C) In contrast, Q-asymm models fit to pre-changepoint trials were predominantly winner-biased in both groups. D) We
fit Q-asymm? to participant data, which was equivalent to Q-asymm, except that its two learning rates reset after the changepoint.
Calculating the difference between the model’s pre- and post-changepoint asymmetry index A revealed a tendency to become less winner-
biased in the ‘down’ group (left panel).

'down': mean accuracy = 0.67 + 0.02 SE; F(1,81) = 3.87, p = .053), nor was there a significant changepoint x
direction interaction effect (F(1,81) = 1.25, p = .268). Repeating this 2 x 2 ANOVA on Tl accuracy, we likewise
observed a main effect of changepoint (F(1,81) = 20.00, p < .001), which was similarly driven by an improvement
in Tl accuracy from the pre- to the post-changepoint phase of the experiment (pre-changepoint: mean accuracy =
0.65 * 0.02 SE; post-changepoint: mean accuracy = 0.72 = 0.02 SE). While the main effect of direction on TI trial
accuracy was non-significant (‘'up': mean accuracy = 0.68 + 0.02 SE; 'down': mean accuracy = 0.69 + 0.03 SE; F(1,81)
< 0.01, p = .950), we observed a significant changepoint x direction interaction (F(1,81) = 5.87, p = .018).
Bonferroni-corrected post-hoc comparisons revealed that while participants in the 'up' group exhibited a
significant improvement in Tl accuracy from the pre- to the post-changepoint phases (pre-changepoint: mean

accuracy = 0.63 % 0.03 SE; post-changepoint: mean accuracy = 0.74 + 0.03 SE; t(38) = 5.19, p < .001), participants
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11
in the 'down' group showed no such effect (pre-changepoint: mean accuracy = 0.67 + 0.02 SE; post-changepoint:
mean accuracy = 0.70 £ 0.03 SE; t(43) = 1.51, p = .277).

To inspect any differences in the development in Tl accuracy after the changepoint more closely, we divided the
post-changepoint phase in half and performed a further 2 x 2 ANOVA on non-anchor Tl accuracy, but this time
using these two halves of the post-changepoint data as the within-subjects factor, as opposed to pre- vs. post-
changepoint. We observed no significant main effect of this factor (first half: mean accuracy = 0.71 + 0.02 SE;
second half: mean accuracy = 0.73 £ 0.02 SE; F(1,81) = 1.99, p =.162). However, the direction x post-changepoint
half interaction effect was significant (F(1,81) = 6.39, p = .013). Bonferroni-corrected post-hoc comparisons
revealed that this was similarly driven by a significant improvement in Tl accuracy among the ‘up’ group from the
first half of the post-changepoint phase to the next (first half: mean accuracy = 0.70 + 0.04 SE; second half: mean
accuracy = 0.77 + 0.03 SE; t(38) = 3.03, p = .009), and a non-significant difference between the post-changepoint
halves among ‘down’ participants (first half: mean accuracy = 0.71 + 0.03 SE; second half: mean accuracy = 0.70 +
0.04 SE; t(43) = 0.67, p >.999). Together, this indicates that the changepoint manipulation differentially impacted
participants’ ability to infer transitive relations among unchanged items: while participants continued to improve
non-anchor Tl accuracy when i; moved to the top of the hierarchy, non-anchor Tl learning was relatively stunted

in participants for whom i; moved to the bottom of the hierarchy.

We next investigated the extent to which participants appropriately switched their choice preferences for
whichever anchor item had moved to the other end of the hierarchy after the changepoint - i.e. P(choose i;) for
'up' participants, and P(choose i;) for 'down' participants (note: we excluded i; vs. i7 trials from this analysis in
order to isolate any changes in preference for these moved anchors with respect to the non-anchor items). In 'up’
participants, we observed a significant increase in participants’ preference for the moved anchor i; after the
changepoint (pre-changepoint: mean = 0.15 + 0.02 SE; post-changepoint: mean = 0.57 + 0.06 SE; t(38) =6.57, p <
.001), and likewise a significant decrease in 'down' participants’ tendency to choose i; after the changepoint (pre-
changepoint: mean =0.70 + 0.03 SE; post-changepoint: mean =0.38 + 0.05 SE; t(43) =-7.49, p <.001). The absolute
difference in choice preferences for the moved anchor before and after the changepoint did not significantly differ
between the two groups (‘up': mean difference 0.41 + 0.06 SE; 'down': mean difference = 0.32 + 0.04 SE; t(81) =
1.19, p = .238). Thus, both groups of participants appeared equally capable of correctly re-positioning whichever
anchor item had moved to the other end of the hierarchy. This may suggest a certain degree of symmetry in
updating the anchor items themselves after the changepoint, alongside the more general asymmetric updating of

all other items, a possibility that we return to later in the Results section.
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Fig 5A-B. Model comparison for each candidate model, within each task condition. A) Lower AIC values indicate better fit of the model to
the behavioural data. Dashed lines indicate quartiles of the data, while asterisks indicate a significant difference between AIC values for a
given pair of models (i.e. p < .05; Wilcoxon signed-rank tests). B) Higher pxp values (bars) indicate greater probability that a given model is
the most frequent data-generating model in the studied population, while diamonds indicate the estimated frequency of each model.

Model Asymmetry

The foregoing behavioural analyses suggest that participants exhibited value compression effects and differential
sensitivity to changes in relational structure consistent with a winner-biased belief-updating policy. Next, we fitted
our symmetric and asymmetric RL models (Q-symm and Q-asymm) to the human experiment data, using the
Akaike Information Criterion (AIC) to compare relative model fits (see Model and Parameter Recovery in Materials
and Methods and Fig S3A-B) [29]. In accordance with Bayesian model selection approaches, we also calculated
the protected exceedance probability (pxp) associated with each model, which quantifies the probability that a
given model is the most frequent data-generating model of the entire set of candidates [30]. In both groups of
participants, Q-asymm provided a better fit to participants’ behaviour than Q-symm, as confirmed using Wilcoxon
signed-rank tests of AICs ('down': mean Q-asymm AIC = 349.81 + 10.46 SE; mean Q-symm AIC = 366.12 + 9.71 SE;
Z=5.22, p <.001; 'up': mean Q-asymm AIC = 339.26 + 12.48 SE; mean Q-symm AIC = 363.53 + 10.99 SE; Z=5.25,
p < .001) (Fig 5A). Comparison of pxps likewise revealed, in both groups of participants, a clear advantage for Q-

asymm over Q-symm (‘up’: Q-asymm pxp > 0.99, Q-symm pxp < 0.01; ‘down’: Q-asymm pxp > 0.99, Q-symm pxp
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< 0.01). These initial model comparison analyses therefore not only replicate previously observed learning
asymmetries, but also suggest that the differential impact of the changepoint in our modified Tl setting is likewise

best captured by the asymmetric learning agent Q-asymm.

We next examined the model-estimated asymmetry index A of each participant under the Q-asymm model, where
values of A closer to 1 or -1 indicate greater winner or loser biases respectively, and A = 0 indicates perfect
symmetry between learning rates (see Eq 3. in Materials and Methods, ‘Behavioural Models’). As in previous work
[5], values of A tended to be left-skewed in the 'up' group, indicating a strongly winner-biased learning asymmetry
(Fig 4B, right panel). In addition to this majority of 'up' participants who were estimated to be winner-biased
(N=32/39), there was also a small sub-group of participants for whom A was lower than 0, and hence who were
estimated to be loser-biased under the best-fitting Q-asymm model (N=7/39). In contrast, A values for 'down'
participants exhibited a more starkly bimodal distribution, such that participants were more evenly split between
being either strongly winner-biased (N=20/44) or loser-biased (N=24/44) (Fig 4B, left panel). Indeed, non-
parametric statistical comparisons revealed significantly lower values of A in 'down' participants compared to 'up'
participants ('down': mean A =-0.02 + 0.12 SE; 'up': mean A = 0.62 + 0.10 SE; Mann-Whitney-U-test: U = 1269.00,
p < .001). In contrast, when fitting Q-asymm to participants’ pre-changepoint choices only, we observed no
significant difference in model-estimated asymmetry ('down': mean A=0.34 £ 0.11 SE; 'up': mean A=0.38 £ 0.11
SE; Mann-Whitney-U-test: U = 876.00, p = 0.873). The A values obtained from these pre-changepoint fits instead
tended to be similarly left-skewed in both groups, providing estimates for the number of winner and loser-biased
participants (‘up': winner-biased N=28, loser-biased N=11; 'down': winner-biased N=31, loser-biased N=13) that
more closely matched those obtained under our model-agnostic asymmetry slope metric reported earlier (cf. Fig
4A and S2). This suggests that while participants’ pre-changepoint behaviour may be best explained by a winner-
biased learning policy, our model fitting procedure may have biased Q-asymm-derived learning rates towards
capturing post-changepoint behaviour, leading to inflated estimates of loser learning rates. We address this

possibility in the following section.

Our original hypothesis was that a differential impact of the changepoint on Tl performance would arise as a direct
consequence of the agent’s asymmetric learning policy — that is, the relative ease (or difficulty) in accommodating
the 'up' (or ‘down’) relational change should be a function of each agent’s tendency to preferentially update
winners or losers, up until the changepoint is reached. Such hypotheses were therefore derived under the
assumption of a static degree of asymmetry, whereby each agent’s preferential updating of winners (or losers)
remained constant over the course of the task, even in the face of the changepoint. However, it is also important
to consider the possibility that such asymmetries may have varied over time as learning progressed, or as a
function of objective changes in the task (namely, the changepoint). To evaluate the possibility that participants’
degree of learning asymmetry may have differed before and after the changepoint, we fitted a variant of Q-asymm
equipped with two separate pairs of learning rates for winners and losers for each experimental phase, i.e. a*pr,
0 pre aNd G*post, O post. We then calculated the asymmetry indices Agre and Apost Of this model Q-asymm? using each

of these pairs of fitted learning rates (Fig 4D). Participants in the ‘up’ group showed a winner-biased learning
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asymmetry in the pre-changepoint phase that did not significantly differ between changepoints (mean Agre = 0.42
+0.11 SE; mean Apost = 0.51 + 0.10 SE; Wilcoxon signed-rank test: Z = 0.35, p = .727). However, participants in the
‘down’ group underwent a significant reduction in their winner-biased learning asymmetry after the changepoint
(mean Apre =0.37 £ 0.10 SE; mean Apost = -0.02 £ 0.12 SE; Wilcoxon signed-rank test: Z=2.04, p =.041).

Interestingly, the ‘down’ participants for whom this change in learning asymmetry was most pronounced tended
to be those who exhibited relatively high post-changepoint performance. For instance, participants’ difference
between Auost and Apre under Q-asymm? was significantly negatively correlated with their post-changepoint non-
anchor Tl accuracy, and hence with their capacity to respond to the changepoint while minimising disruption to
the unchanged transitive hierarchy (r = -0.73, p < .001; Fig S4A). Likewise, this reduction in learning asymmetry
after the changepoint was positively correlated with participants’ pre- versus post-changepoint change in
preference for the moved anchor i, such that participants who correctly reduced their preference for i; tended
to show a greater reduction in their winner-bias after the changepoint (r = 0.38, p = .010; Fig S4B). In contrast, no
such significant relationship held for 'up' participants, neither with respect to their post-changepoint non-anchor
Tl accuracy (r=0.22, p =.181), nor their change in preference for the moved anchor i; (r = 0.03, p = .846). These
findings lend further support to the idea that although the changepoint experienced by ‘down’ participants
disrupted Tl learning at the group level, well-performing participants were nonetheless capable of leveraging an

adaptive reduction in winner-biased asymmetry to respond more appropriately to the change in ground truth.

Adaptive Asymmetry

The foregoing model comparison analyses indicate that while Q-asymm provides a good overall fit to both groups
of participants’ behaviour, especially with respect to pre-changepoint trials, it is limited in its ability to account for
well-performing participants who initially exhibited value compression, but who were nonetheless capable of
responding appropriately to the downward change in relational structure. We therefore sought to explore how
Q-asymm might be modified to make its learning policy flexible enough to capture the behaviour of such

participants.

Inspiration for how differing degrees of asymmetry may arise as a function of some relevant task feature came
from Ciranka et al.’s [5] finding that the sparsity of feedback appears to play a role in modulating learning policy
asymmetry. Specifically, they observed that whereas participants tended to exhibit asymmetric belief-updating
policies in the standard partial feedback Tl paradigm, performance in a task offering full feedback on all
comparisons, as opposed to just comparisons between neighbours, was best characterised by symmetric learning
rates, and hence best fit by the symmetric model Q-symm. Such feedback regimes facilitate learning because they
offer participants the opportunity to learn the cnarciness relations between non-neighbouring items directly. This

also provides many more opportunities for the agent to confirm or revise their prior beliefs about the ordinal
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Fig 6A-C. lllustration of how Q-adapt modulates its degree of learning asymmetry. A) The asymmetry modulator A is given by a quadratic
function of the agent’s preference strength — that is, the probability that they will choose ix>i, on a given trial. The steepness of the
asymmetry modulator function — that is, the degree to which A is sensitive to changes in choice probability — is modulated by w. B)
Preference strength is a logistic choice function of the difference in value estimates for the compared items, the slope of which is
determined by the temperature parameter t. C) Assuming a constant w (here, w=1), then, given the relationship between A and choice
preference in A, which is itself dependent on t, this means that the extent to which a difference in value estimates results in a smaller value
of A, and hence a more symmetric learning update, is at least partially shaped by each agent’s value for t, and hence by their decision noise.
In practice, Q-adapt’s learning dynamics can be roughly described as follows: at the beginning of the experiment, item values are not
distinguishable, causing the agent to update items asymmetrically. As learning progresses and stronger preferences are formed, the agent
begins to utilise a more symmetric update. Lower noise agents will exhibit a stronger tendency in this direction, meaning that, upon receipt
of the i<i; feedback, they will more appropriately update these items (and indeed items on following trials) in a symmetric fashion, and
thus resolve the ‘down’ changepoint with less difficulty. In contrast, higher noise agents will tend to update more asymmetrically across all
value differences, leading to inflexible adaptation to the ‘down’ changepoint among those who are winner-biased.

positions of the item set, which may lend itself to the application of symmetric updates to both compared items
on a given trial. In contrast, in partial feedback settings where participants are required to ‘build’ a representation
of the transitive hierarchy purely endogenously, the paucity of feedback that verifies or falsifies the agent’s beliefs
about the ranking of items may necessitate asymmetrically prioritising the update of just one of the two compared

items on a given comparison until a clearer representation of the item hierarchy has been formed.

We therefore formalised an adaptive agent Q-adapt, whose degree of asymmetry varied on a trial-by-trial basis
as a function of the strength or uncertainty of the agent’s belief regarding the cnarciness relation between the
two compared items. The rationale was that trials for which the agent’s belief about the two items is less certain
may induce them to (asymmetrically) allocate a larger proportion of the overall update to one of the items. In
contrast, on trials where the agent has a stronger belief, the receipt of feedback should provide a clear indication
that this prior belief needs to be further reinforced or reversed via a more symmetrically distributed updating of
both items. Drawing on the information theoretic notion of choice entropy, we derived an asymmetry variable A
which reflects the absolute strength of belief about the current comparison, and controls the degree to which the
agent’s ‘base’ learning rate resource a? is shared between a* and a” (Fig 6A; see Egs. 6-8 in Materials and Methods,
‘Behavioural Models’). For example, assuming an agent with a general tendency towards winner-biased updates,
when A is 1 (indicating a weak preference), all of a° will be allocated to a*, whereas g is set to 0. As A approaches

0 (indicating a stronger preference), however, a’ is more evenly spread across both learning rates, meaning a* and
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a become more symmetrical. Thus, whereas Q-asymm defines a* and a as two free parameters, Q-adapt has a
single base learning rate parameter g° that is adaptively spread between a* and a as a function of A on a trial-by-

trial basis.

In dynamically distributing learning updates in this way, Q-adapt models participants as tending to be more
asymmetric in their updates towards the beginning of the experiment while they are still learning the transitive
hierarchy, thus mirroring Q-asymm’s asymmetric policy. As learning progresses, and hence stronger (and, ideally,
correct) beliefs about item relations are formed, learning updates are distributed more symmetrically (note that
as the agent’s expectations about item relations become more accurate, this will in turn reduce the relative
difference between predicted item values, resulting in a concomitant reduction in learning, as per Eq. 4). Once
the changepoint is reached and the agent observes that i<i; — i.e. an outcome that contradicts the agent’s strong
prior belief that i;<i; —, the symmetric nature of the quadratic function allows for an updating of both Q(i;) and
Q(i;) that is itself more symmetric, albeit still winner-biased. This is consistent with our finding that participants
of both groups were equally capable of repositioning the moved anchor in each case, despite the differential

impact of the changepoint on downstream Tl performance.

The extent to which an agent may tend towards such symmetric updates is not only shaped by an additional
sensitivity parameter w (see Eq. 6), but also depends on how readily the agent forms strong preferences. This is
itself determined by several interacting factors, including the rate at which the agent updates items upon receipt
of new feedback (i.e. the learning rate), and the behavioural variability arising from the decision process (i.e. the
temperature parameter t of the logistic choice function; see Eq. 5 in Materials and Methods, ‘Behavioural
Models’). In the present case, well-performing agents, such as those with lower values of T will tend to more
readily translate differences in value estimates into stronger choice preferences (Fig 6B), and hence will be more
inclined to distribute more symmetric updates as learning progresses via lower values of A (Fig 6C). In contrast,
noisier agents will tend towards more asymmetric updates, limiting their ability to adapt to the change in
relational structure occurring in the 'down' group. Thus, in modulating learning asymmetry as a function of choice
preference, which is itself shaped by internal learning and noise parameters, the present implementation of Q-
adapt allows agents to a) initially exhibit asymmetric learning while choice preferences are being acquired, and
(crucially), b) appropriately deploy more symmetric learning later on in the learning phase under ‘well-performing’

learning and choice parameterisations.

We fitted this modified model Q-adapt to participants’ choices over the whole experiment, and repeated the
Bayesian model selection steps to calculate model pxps, given the addition of this new candidate model (Fig 5A-
B). Among ‘up’ participants, the adaptive model Q-adapt did not significantly differ from Q-asymm in terms of AIC
(Q-adapt: mean AIC = 339.20 £ 12.65 SE; Q-asymm: mean AIC = 339.26 + 12.48 SE; Wilcoxon signed-rank test of
AlCs: Z=0.27, p =.791), and did not outperform Q-asymm in terms of pxp (Q-adapt: pxp = 0.45; Q-asymm: pxp =
0.54; Q-symm: pxp < 0.01). Among ‘down’ participants, Q-adapt yielded a slight but non-significant improvement
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in terms of AIC (Q-adapt: mean AIC =348.37 + 10.60 SE; Q-asymm: mean AIC = 349.81 + 10.46 SE; Wilcoxon signed-
rank test of AlCs: Z=0.81, p = .421), but clearly outperformed its static counterparts in terms of pxp (Q-adapt: pxp
= 0.93; Q-asymm: pxp = 0.07; Q-symm: pxp < 0.01). Together, this indicates a narrow advantage for Q-adapt over

Q-asymm in terms of model fit, particularly with respect to ‘down’ participants.

As a final model validation step, we simulated Q-adapt (along with all other models) using the best-fitting empirical
parameters to verify whether this model was capable of qualitatively reproducing the key behavioural effects
observed in our empirical dataset [29,31]. We first examined the consistency of the human and model-estimated
value compression effects. In line with the descriptive results (cf. Fig 3A, upper left panel), Q-adapt’s pre-
changepoint Tl performance was characterised by a compressed value structure, with asymmetry slopes
significantly below O ('up': mean 6 =-0.02 + 0.01 SE, t(38) =-3.89, p <.001; 'down': mean 8 =-0.01 + 0.01 SE, t(43)
=-2.44, p = .019). Identifying participants as winner- or loser-biased according to the sign of their best-fitting a°
value, Q-adapt likewise yielded estimates for the proportion of participants falling into each category that were
more closely in line with those gleaned from the sign of participants’ asymmetry slope (number of winner-biased
participants under Q-adapt: 'down': 25/44 participants; 'up': 33/39 participants; cf. Fig 4B and S2). This stands in
contrast to Q-asymm, which failed to reproduce a significantly negative asymmetry slope among 'down’
participants (‘up': mean 8 =-0.02 + 0.01 SE, t(38) =-4.03, p < .001; 'down': mean 8 =-0.01 + 0.01 SE, t(43) = -1.44,
p =.157), while also underestimating the proportion of winner-biased participants according to its model-based

asymmetry index A, as reported earlier.

Turning to model behaviour as a function of the changepoint, Q-adapt’s Tl performance was differentially
impacted by the change in underlying ground truth rankings, as in our behavioural data (cf. Fig 3B, left panels):
non-anchor Tl accuracy was relatively stunted in the ‘down’ group after the changepoint, whereas performance
continued to improve in the ‘up’ group (Fig 3B, right panels). Interestingly, the exact pattern of Tl disruption in
‘down’ participants deviated from that predicted by Q-adapt (and indeed Q-asymm); while our models predicted
a more pronounced decline in lower-valued comparisons, the detrimental impact of the ‘down’ changepoint
tended to be more strongly reflected in higher-valued comparisons (Fig 2, lower-leftmost and lower-rightmost
panels). Nonetheless, as in our behavioural data, the broad pattern of a differential impact of the changepoint on
inferential knowledge was supported by a significant changepoint x direction interaction effect on Q-adapt’s non-
anchor Tl accuracy (F(1,81) = 4.17, p = .044). This was driven by a significant improvement in Tl accuracy from pre-
to post-changepoint for ‘up’ participants modelled by Q-adapt (pre-changepoint: mean accuracy = 0.67 = 0.02 SE;
post-changepoint: mean accuracy = 0.75 + 0.03 SE; t(38) = 6.56, p < .001), in contrast to a far less pronounced,
albeit still significant, increase in Tl accuracy between changepoints for ‘down’ participants modelled by Q-adapt
(pre-changepoint: mean accuracy = 0.68 + 0.02 SE; post-changepoint: mean accuracy =0.72 £ 0.02 SE; t(43) = 2.43,
p =0.039).
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Thus, considering not only our models’ predictive performance, as approximated by model evidence metrics, but
also their ability to generate patterns of behaviour resembling those observed in humans, Q-adapt emerged as

the model that best captured human Tl performance.

Discussion

Tlis an instance of humans’ and other animals’ impressive ability to utilise knowledge gained about local relations
to infer global, unseen relationships. By introducing different changes in relational structure, we demonstrated
that winner-biased belief-updating confers different levels of flexibility to adapt to such changes in ground truth
orderings: whereas relocating the worst item ‘up’ to the top of the hierarchy is readily accommodated, relocating

the best item ‘down’ to the bottom has a more disruptive impact on downstream inferential knowledge.

Participants’ reduction in sensitivity to pre-changepoint Tl comparisons with increasing combined value replicates
compression effects previously observed in inferential learning settings [5]. Besides further underscoring the
utility of using an RL framework to capture Tl learning dynamics [4,5,32], we extend these findings by observing
differences in adaptability to changes in relational structure that are consistent with an asymmetric, rather than
symmetric, learning policy. Our findings lend further credence to the hypothesis that belief-updating asymmetries
extend beyond two-armed bandit and foraging task contexts [10]. We note that the specific form of positivity bias
in the present study is somewhat different to those investigated in the wider literature. In other RL paradigms,
‘positivity’ refers to the preferential update of values or options upon receipt of a positive (as opposed to negative)
reward prediction error (RPE). Here, in contrast, the bias lies in the disproportionate updating of the winner and

loser of a given binary comparison, independent of the sign of the RPE.

Our paradigm’s minimal change in underlying ground truth structure halfway through the task was reflected in a
slight change in feedback that only subtly differed between groups: both sets of participants were given a single
new piece of feedback (i.e. i<i;), and only differed in the single comparison pair that no longer offered feedback
(i.e. iy vs. i for 'up' participants, and isys.iz for 'down' participants). To model the updating of item value estimates
in response to choice feedback, we assumed a relatively simple RL framework that only updated its cached value
estimates for the currently presented pairs of items on receipt of feedback. Indeed, the utility of this ‘model-free’
approach in capturing human Tl behaviour demonstrates that such inferential capabilities can proceed without
necessarily invoking any abstract knowledge of the structural regularities entailed by particular relations (i.e.
knowing that A<C because A<B and B<C). Nonetheless, it remains an intriguing possibility that humans could
resolve the ambiguity initially induced by the changepoint by learning from trials from which they receive no
feedback. Inthe present case, for example, a participant in the ‘up’ group might have learned to expect feedback,
given the presentation of i; vs. i,. The subsequent, unexpected omission of this feedback after the changepoint

could induce them to update their value estimates for the presently compared items, and/or indeed items at the
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other end of the hierarchy, since it could be seen as diagnostic as to which of the underlying changes in ground
truth explains the recently observed and highly surprising outcome i<i;. This capacity to infer how the receipt or
omission of feedback on a given comparison bears on items elsewhere in the hierarchy would therefore require a
structural model of how the full set of items are related, potentially drawing on model-based approaches

furnished with the ability to mentally simulate the outcomes of pairwise comparisons through replay [33—35].

The compression of participants’ learned value structures constitutes an instance of a more generalised distortion
widely observed across psychophysical, numerical and economic decision-making contexts, whereby the
discriminability between comparanda decreases with increasing stimulus intensity or magnitude [36—40]. Here,
we propose that such compressed representations may emerge from an asymmetric learning policy (see also [5]).
Nonetheless, we by no means argue that belief-updating biases are the only source of these ubiquitously observed
psychometric distortions. Indeed, we note that the reduction in discriminability owing to increased overall value
estimates across the hierarchy is not inconsistent with the view that compressed judgements of magnitude may
arise, for example, from the mental organisation of numerical information on a power or logarithmic scale [38,39].
One potential way of disentangling the relative contributions of asymmetric policies and non-linear ‘Weber
scaling’ of internal representations in the relational learning domain would be to more closely examine
participants’ individual differences in the sign of the asymmetric learning bias: if the behavioural compression
effects exhibited by winner-biased participants were equivalent to the anti-compression effects of loser-biased
participants with equal absolute learning rate asymmetries, then this would further emphasise the role of
asymmetric learning policies in the emergence of value compression. Relatedly, observing the opposite
changepoint x direction interaction effect observed in our experiment, but among a predominantly loser-biased
population — that is, disruption to inferential knowledge among the ‘up’ group, rather than the ‘down’ group —
would lend further support to the idea that it is the sign of the learning asymmetry that is responsible for any (in-
Jefficient changepoint adaptation effects. Given the limited number of loser-biased participants in the present

study, we leave this question for future work containing larger and more diverse samples of participants.

Our behavioural predictions were derived from Q-asymm, an RL agent that scaled its updates of winners and
losers of pairwise comparisons according to asymmetric learning rates that remain fixed throughout the
experiment. While this model significantly outperformed its symmetric counterpart Q-symm, it nonetheless
underestimated the proportion of winner-biased participants. This raised the possibility that well-performing
participants in the 'down' group were capable of both adapting to the change in relational structure, while also
exhibiting pre-changepoint compression effects consistent with an initially winner-biased learning policy. We
therefore introduced Q-adapt, a model whose trial-by-trial learning rate asymmetry varied as a function of the
strength of its choice preference, thereby enabling well-performing participants to appropriately deploy more
symmetric updating once the changepoint was reached. Existing models of changepoint adaptation typically
possess the ability to separate the ‘aleatoric’ uncertainty pertaining to expected variability in an outcome from
the ‘epistemic’ uncertainty arising from unexpected changes in a volatile reward environment [12-14].

Changepoints cause these models to increase their learning rates until the period of high epistemic uncertainty is
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resolved. Q-adapt lacks this capacity to track periods of volatility to modulate its overall learning rates, instead
using the choice uncertainty on a given trial, as given by an entropy-like function, to directly modulate its degree

of asymmetry.

Q-adapt parsimoniously unifies recent findings that asymmetric and symmetric learning policies each best explain
human behaviour in, and indeed are optimal for, partial and full feedback Tl regimes respectively [5]. We propose
that the degree of belief-updating asymmetry flexibly varies according to the strength of an agent’s prior belief,
and hence the informativeness, or entropy, of any resulting feedback. The formation of choice preferences from
differences in value estimates is itself shaped by two model parameters: the amount of learning (as controlled by
the base learning rate a%), and the decision noise with which learned item values are transformed into choices (as
controlled by the temperature parameter t; Fig 6B-C). The role of the latter parameter in asymmetry modulation
dovetails with empirical work suggesting that magnitude compression effects and related psychometric
distortions vary as a function of decision noise or task load [41-44]. Indeed, sensitivity to uncertainty has often
been incorporated into RL frameworks in various guises, and has been suggested as guiding the use of different
behavioural controllers in humans [45], the flexible combination of reward information in primates [46], and the
volatility-induced adaptation of learning rates via meta-learning in rodents [47]. In the present case, the concept
of uncertainty may more appropriately pertain to the agent’s prior confidence about the relative difference
between item values at the time of choice. For example, if an agent has a stronger preference for /</,, and thus a
less noisy representation of the relative values of these items, then the receipt of feedback that either confirms
or disconfirms this belief may more unambiguously be incorporated into the agent’s value estimates in the form
of a more symmetric update. In contrast, uncertain beliefs about less discriminable items may be associated with
greater noise or working memory load, making it more appropriate to focus one’s update on just one item.
Although our exploratory model comparison was intended to formalise the idea that stronger preferences should
induce more symmetrical updates, there are several other task-related or internal variables that may covary with
the strength of an agent’s preference, including confidence or surprise, the expected value of the chosen or
unchosen option, the RPE magnitude, or the balance of exploration versus exploitation etc.. Future work could
disentangle these candidate task features or decision-making variables that may give rise to fluctuating levels of

asymmetry.

Theoretical accounts have proposed that the degree of learning rate asymmetry is optimally adapted to the
richness of a reward environment, such that positive learning rate asymmetries maximise rewards in ‘poor’
environments, while negative asymmetries maximise rewards in ‘rich’ environments [11,48]. Asymmetric
updating in response to relational feedback can be thought of as optimal in a similar way; under sparse feedback,
prioritising the update of just one of the two compared items magnifies relative differences among item estimates
during initial learning, and is therefore optimal for the ‘building’ of a value structure in which value estimates are
clearly separated [5]. A corollary of these theoretical frameworks is that learning biases should dynamically invert
as a function of the amount of reward available, although empirical evidence for such inversion is mixed [23,24;

although see 25]. Our adaptive framework explores the possibility that the relative balance of positive and
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negative learning rates may dynamically narrow over time, rather than reverse. In any case, the mixed empirical
evidence for adaptive asymmetries may be due to different operationalisations of reward richness. For instance,
the above studies manipulated the average reward rate by controlling the probability that a reward would be
received upon selection of one of two bandits. In contrast, the proportion of comparisons offering binary choice
feedback, relative to those offering no feedback, did not change over the course of our Tl changepoint task, nor
did it vary between groups. Thus, in the present study, it is the trial-by-trial variability in choice preference
strength, rather than the distribution of rewards, that is hypothesised to have an impact on learning rate

asymmetry adaptation.

Aside from the RL framework deployed here, one can alternatively examine the Tl changepoint problem under a
Bayesian inference scheme, as has widely been done in the context of Tl [3,32,49], and indeed structure learning
more generally [50-52]. Under this broad class of frameworks, our Tl changepoint scenario could be viewed as a
problem of resolving feedback ambiguity: the new observation that i<i; is, at first, equally consistent with a
change in ii’s ranking as it is with a change in i;s ranking, meaning the agent must track the likelihood of
subsequent choice feedback under each of these hypotheses about the new underlying ground truth structure. A
wealth of literature has likewise researched the role of episodic processes, likely implemented in the
hippocampus, in enabling inference and generalisation [53,54]. More specifically, TI may be supported by
‘retrieval-based’ inference mechanisms that reactivate and recombine pattern-separated representations of
specific relations [35,55], or via a more ‘encoding-based’ recruitment of inferred relationships via overlapping
structural representations [56,57]. Since the present study focused on how the reorganisation of relational
knowledge intersects with widely observed biases in value learning, we did not incorporate into our models the
possibility that transitive learning might also involve episodic memory processes [5,35]. Elucidating whether and
how such episodic processes ‘feed into’ the caching of item values would therefore be a promising avenue for

future work.

Several lines of research have connected elementary belief-updating biases with research in clinical settings. While
positivity biases may provide an adaptive means of promoting positive well-being [58] or motivation [6],
converging empirical and theoretical work has also implicated more pessimistic learning rates in a range symptoms
of Major Depressive Disorder [59—-61]. Our finding that belief-updating biases confer different levels of flexibility
to changes in relational structure raises interesting questions about whether or not such differences in
adaptability also cut across clinical populations. It would be particularly interesting to consider such asymmetries
in changepoint adaptability in the context of risk-seeking or gambling behaviour, since they predict differences in
the influence of various outcomes — e.g. a change in a previously low-performing bet versus a change in a
previously high-performing bet — on reward expectations pertaining to unchanged bets. While our paradigm
contained fully deterministic relational feedback, and therefore did not incorporate any risk or outcome variance
per se, evidence suggests that the degree of learning asymmetry shapes the relationship between the
environment’s reward variability and an individual’s tendency to seek or avoid risks [62—64]. Given our hypothesis

that asymmetry dynamically varies as a function of preference strength, which in turn is influenced by an agent’s
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decision noise, it would be worthwhile to consider the role of belief-updating biases in value compression and
changepoint adaptability effects under different levels of outcome variance (i.e. via probabilistic relational

feedback), and how this relationship might be moderated by clinically relevant symptoms or traits.

Our RL agents constituted descriptive models of how biased learning policies give rise to subjective value
distortions and differences in behavioural adaptability. While we make no causal or mechanistic claims about the
dynamics of relational learning in the brain, research centring on neuromodulatory activity in the basal ganglia
and brainstem may offer plausible accounts for how updates may be asymmetrically scaled during RL.
Subpopulations of striatal neurons with distinct excitatory and inhibitory properties (i.e. D1 and D2 receptors,
respectively) may provide a means of differential engagement of dopamine-mediated learning as a function of
positive or negative prediction errors [65—67]. Likewise, empirical work has implicated serotonergic systems
operating over behaviourally relevant timescales in the ability to track and adapt to changes in the volatility of
reward environments [47,68]. It would therefore be interesting to consider how such neural accounts extend
beyond bandit tasks to structure learning settings that more explicitly engage generalisation and inference
processes. In addition, our investigation of differences in adaptability to changes in underlying relational structure
ties into research exploring how neural and artificial systems reconfigure knowledge at the representational level
in response to new information. Evidence suggests that the linking together of transitive hierarchies is mirrored
in the joining of neural manifolds in fronto-parietal regions and deep neural networks alike [18]. Examining how
the differences in relational adaptability observed in the present study might be recapitulated in a neural network
may in turn yield neuroscientific hypotheses about how representational geometries may be (in-)efficiently

reorganised in response to changes in environmental structure.
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Materials and Methods

Participants

Participants (N=150) aged between 18-40 years were recruited online via Prolific Academic (74 female; mean age
27 +5.27 years SE). After confirming their written informed consent, participants were randomly allocated to one
of two groups: the ‘up’ group (N=76; 37 female; mean age = 27.14 £ 5.12 years SE), or the ‘down’ group (N=74; 37
female; mean age = 26.85 * 5.41 years SE). Participants received compensation of £6.00, plus a performance-
dependent bonus of £2. The study was approved by the Ethics Committee of the Max Planck Institute for Human

Development.

Since our study focused on the impact of the changepoint manipulation on learned knowledge, we implemented
a performance-related inclusion criterion. Participants in both groups experienced the same trial structure before
the changepoint was reached (albeit with different item allocations and trial sequences). We therefore used a
binomial test to compute a performance threshold above which the likelihood that participants were performing
at chance on pre-changepoint trials was 0.01 (i.e. following the criteria used by Ciranka et al. [5]), thus avoiding a
confound by the experimental manipulation of interest. One additional participant was excluded for exhibiting a
high proportion of missed responses (>60% of 322 trials). After the application of these criteria, N=83 participants
(36 female; mean age = 26.90 + 5.34 years SE) remained for analysis (‘'up': N=39; 'down': N=44). Restricting the
application of this criterion to the first half of the experiment while participants were still learning to perform the
task amounted to a somewhat conservative approach, in turn resulting in a relatively high proportion of
participants being excluded. Nonetheless, we note that when we applied a more liberal threshold for inclusion (a
=0.1), which left N=103 participants ('up': N=53; 'down': N=50), our core findings —i.e. a differential impact of the
changepoint on downstream Tl performance, best explained by our adaptive asymmetry model Q-adapt —

remained unchanged.

Stimuli, Task and Procedure

The behavioural task was an adapted version of the Tl paradigm used in Experiment 4 of Ciranka et al.’s study [5],
and was programmed in PsychoPy 2022.2.2 [69]. Seven images of everyday objects and animals drawn from the
BOSS database [70] were randomly assigned a ground truth rank from 1-7 at the beginning of the experiment for
each participant. Participants were told that their task was to learn about how the items related to one another
with respect to how ‘cnarcy’ they are. They were informed that whether or not an item was more or less cnarcy
than another was unrelated to any characteristics that these items have in real life. Rather, participants could only

learn about cnarciness through the feedback provided on each trial of the experiment.
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On each trial, following a 0.5s fixation cross, two items were simultaneously presented on the left and right side
of the screen on a white background for up to 2.5s. Participants were instructed to select whichever item they
thought was more cnarcy than the other as accurately and as quickly as possible using the left or right arrow key.
They were informed that, on some trials, they would receive on-screen feedback (“correct”/”incorrect”) about
whether or not they had correctly chosen the cnarcier item. Unbeknownst to participants, the delivery of feedback
was determined by the relative positions of the two items in the underlying cnarciness hierarchy that was
established at the start of the experiment: if the two items were neighbouring in their rank (‘adjacent trials’, e.g.
i3 vs. ig), then participants received feedback (“correct” or “incorrect”) about their choice for 0.5s, whereas if the
items were non-neighbours (‘Tl trials’, e.g. i3 vs. is), then no feedback was provided. If no selection was made

within 2.5s, a ‘missed response’ was recorded. Trials were separated by an inter-trial interval of 0.6s.

Using a set of seven items resulted in 21 possible stimulus pairings. Within each block, the six adjacent pairs were
repeated four times, while Tl pairs were repeated twice. This gave rise to a total of 54 trials per block, of which 24
provided feedback and 30 provided no feedback. The serial order of trials was pseudo-randomised, with left and

right positions counterbalanced within each block.

The entire experiment consisted of six blocks, each followed by a short attention check. At the start of the
experiment and before each block, participants were reminded that not all items would stay as cnarcy for the
entire experiment. Rather, on some blocks, certain items may or (may not) become more or less cnarcy, meaning
their relations to other items (as reflected in choice feedback) may change. In reality, such a change was only
introduced in the fourth block, such that from this block onwards, the ground truth item hierarchy changed in a
manner determined by the group to which participants had been assigned. In the ‘up’ group, the hitherto lowest-
ranking item i; moved 'up' the hierarchy to become the highest-ranking item, whereas in the ‘down’ group, the
hitherto highest-ranking item iy moved 'down' the hierarchy to become the lowest-ranking item. Given that choice
feedback continued to only be delivered on trials comparing items of neighbouring rank, such changes in ground
truth structure resulted in the following minimal changes to the feedback received by each group: 1) participants
in both groups now received feedback informing them that i<i;, 2) participants in the 'up' group now no longer
received feedback that i;<i,, and 3) participants in the 'down' group now no longer received feedback that is<is.
Thus, the changepoint meant that both groups learned about a single new relation, and only differed in the

relation for which choice feedback was retained or withdrawn.

After the final block, participants performed three short tasks to test their explicit knowledge of the item
hierarchy. First, using the mouse to drag and drop items, participants were asked to arrange the items according
to how cnarcy they thought they were by the end of the experiment. Next, they were asked to click on whichever
items (if any) they believed had changed how cnarcy they were at any point in the experiment. Finally, participants
were given the opportunity to enter, using the keyboard, any comments they wanted to share on, for example,

how they performed the task, the nature of the feedback received, or how difficult they thought the task was.
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While we do not analyse this post-task data here, it can nonetheless be freely accessed alongside the rest of

behavioural data (see Data Availability).

Behavioural Models

We assume a simple Rescorla-Wagner learning rule to model how agents update their value estimates of items in

response to relational feedback:

Qre1(x) = Qu(@) + a'[1 — di(z,y) — Qi(2)] Ea. 1

Qii1(y) = Qu(y) +a [—1+di(z,y) — Q:(y)] Eq. 2

, Where Q; is the estimated item value at time t, and a* and a are the learning rates for the winning and losing
items x and y respectively. For the symmetric agent Q-symm, a* = a’, such that these learning rates are modelled
as a single free parameter. In contrast, for the asymmetric agent Q-asymm, a* and a” can freely vary. This allowed
us to obtain each participant’s model-estimated asymmetry index A, calculated as the normalised difference

between best-fitting learning rates under Q-asymm:

B at —a~
ot +a|

A

Eq.3

In the learning equations 1-2, di(x,y) represents the relative difference between Qi(x) and Qu(y), i.e.:

de(t, 7) = 1[Qu(x) — Qu(y)] Eq. 4

, Where n is a scaling factor. This formalises the assumption that value updates scale with the difference between
estimated item values. For instance, if an agent observes that i>iy, this outcome should only induce a small change
in value estimates for these items if the agent had already learned to expect this outcome (i.e. if Q(x) >> Q(y)). In
contrast, observing that ix<i, would be highly surprising, given the agent’s existing beliefs about the relative values
of these items, thus demanding a stronger update in the relevant value estimates. Incorporating such relational
difference-weighting of value updates is necessary for Q-symm and Q-asymm to accomplish Tl for non-anchor
items (i.e. those of intermediate rank) [5]. We note that, depending on the value of the scaling factor n, the
inclusion of the relative difference term d: can ‘overflow’ the bounds (i.e. 1 and -1) of the Rescorla-Wagner rule in
Eqgs. 1-2 —that is, the term that is added to Q(x) in Eq. 1 or subtracted from Q(y) in Eq 2. may end up being negative

or positive, respectively. In such cases, the estimate of the winner would therefore decrease, and/or the estimate
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of the loser would increase. In order to prevent such edge cases, we therefore apply a positive rectifier function
to the winner update and a negative rectifier function to the loser update, such that any negative winner updates

or positive loser updates are clipped at 0.

Finally, we used a logistic choice function to define the probability of choosing ix>i, based on the difference

between estimated item values:

1
pt(ﬂi’ > y) — 1+ e—(Qi(z)—Q:(y))/T) Fa->

, Where T is the temperature parameter determining the shape of the sigmoid function, and thus the degree of

noise in choices based on item value differences.

The learning rates a* and a” remain static for Q-symm and Q-asymm. In contrast, the adaptive asymmetry Q-adapt
is capable of modulating the degree to which learning updates are shared between a given comparison’s winner
and loser on a trial-by-trial basis. On adjacent trials, we calculate an asymmetry modulator A, bound between 0
and 1, as a quadratic function of the strength of the agent’s prior belief about how items x and y are related upon

receipt of choice feedback:
A = —dwp(z > ) +dwp(z>y) +1 —w Eq. 6

The value of A is minimal, causing more symmetric updating, when an agent’s prior belief is strong and thus clearly
supported or contradicted by the receipt of binary feedback (i.e. when p(x<y) approaches 1 or 0), whereas it is
maximal, causing more asymmetric updating, when the agent has no preference (i.e. when p(x>y) = 0.5). w is an
additional sensitivity parameter bound between 0 and 1 controlling the shape of the quadratic asymmetry
modulator function (Fig 6A). This determines how readily an agent adapts their degree of learning rate asymmetry
as a function of the strength of their choice preference, effectively implementing a quadratic function that can be
shallower or steeper depending on the value of w. When w is 0, the agent’s asymmetry is insensitive to changes
in belief strength, such that A=1 (i.e. full asymmetric updating) for all choice probabilities. When w is 1, the Eq. 6
becomes roughly equivalent to a choice entropy function (cf. Eq. 9). (Note: best-fitting values for w were bimodally
distributed around 0 and 1 (i.e. corresponding to no adaptability and maximal adaptability of learning asymmetry,
respectively), and did not significantly differ between groups (‘up’: mean w = 0.37 * 0.06 SE; ‘down’: mean w =
0.47 + 0.06 SE; Mann-Whitney U-test: U = 664.0, p = .077). This indicates that participants in both groups could be
broadly divided into those whose learning asymmetry was or was not sensitive to changes in choice preference

strength).
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The A term can then be used to distribute the agent’s base learning rate a° across a:* and a+ according to the

following linear equations:

1+)\f ao, 1f()§()<0

- : Eq. 7
2 0, otherwise a

+ _
a; = Qg

_ 1— M ag, if ag <0
a;, =ay—— — ' Eq.8
2 0, otherwise

Since we allowed a° to take on negative values, the inclusion of the rightmost term in Egs. 7 and 8 enabled agents
to vary in terms of whether their distribution of a? across a* and a-was winner-biased (i.e. a° > 0, and hence a:>a¢
) or loser-biased (i.e. a’ < 0, and hence a*<a’). Note that we assume that agents cannot reverse their bias for the
winners or losers of comparisons — for instance, for a winner-biased participant fit with a° > 0, a;* can only be
greater or equal to ar. This is consistent with recent empirical work finding no evidence for an adaptive reversal

of the sign of humans’ learning asymmetries [23,24; but see 25].

We also considered an alternative version to Q-adapt in which the asymmetry modulator A is simply an entropy

function of the choice preference strength, such that Eq. 6 is replaced by the following:

A= —pi(x < y)loga(pr(x < y)) — (1 — p(x < y))loga(1 — p(z < y)) Eq.9

However, fitting this model to participant data revealed a significantly worse fit relative to the original ‘quadratic’
variant of Q-adapt described in Eq. 6 (‘quadratic’ Q-adapt: mean AIC = 344.06 + 8.14 SE; ‘entropy’ Q-adapt: mean
AIC = 348.11 = 7.71 SE; Wilcoxon signed-rank test of AICs: Z = 2.29, p = .022). Given this inferior predictive

performance for the ‘entropy’ model variant of Q-adapt, we excluded it from our formal model comparison.

Model Fitting and Comparison

We estimated model parameters by minimising the log-likelihood of each model, given each participant’s single-
trial responses. We used Scipy’s differential evolution method [71,72] over 500 iterations with the following lower
and upper parameter bounds: a*/a: (0;0.5); a° (-0.5;0.5); n: (0;10); t: (0;1). From the resulting log-likelihood
values under these best-fitting parameter estimates, we computed AIC values as an approximation of model

evidence, where lower AIC indicates better goodness of fit, while penalising for model complexity [73]:
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AIC = —2log(P(D|M, 0)) + 2k Eq. 10

This amounts to the likelihood of a participant’s choice data D over the trials of interest, given a particular model
M and its best-fitting parameters (}, plus a penalty term k corresponding to the number of free parameters. AIC
values were in turn used to quantify the protected exceedance probability (pxp) associated with each competing
model using the Variational Bayesian Analysis toolbox in MATLAB [74]. pxp values amount to the probability that
a given model fits participants’ data better than all other competing models, and hence is the most frequent data-
generating model in the studied population. In contrast to the exceedance probability metric, the pxp additionally

accounts for the null hypothesis that there is no difference in the frequencies of each model type [30].

Model and Parameter Recovery

An important prerequisite for comparing models fitted to empirical data is that they are identifiable — that is, such
models should behave in ways that renders them distinguishable under the selected model evidence metric [29].
To validate our model comparison approach, we first took each model’s best-fitting parameters for each of the 83
participants, and used these to generate 10 experimental runs of synthetic (binomial) choice data on each
participant’s set of trial sequences. We then fitted each model to the generated data and evaluated how often
each model provided the best fit. The resulting confusion matrix thus provides a measure of the conditional
probability that a model fits the data best, given the true generative model: p(fit/gen). In turn, this allows one to

‘invert’ the confusion matrix according to Bayes rule, under the assumption of a uniform prior over all models:

fit) = p([fitlgen)p(gen)
Zgiii(ids p(f?”t |g€n)96ﬂp(gen)gen

plgen Eq. 11

In quantifying the probability that the data were generated by a specific model, given that this model provided
the best fit to the generated data, the inverted confusion matrix helpfully complements the model recovery
procedure. As can be observed in the AlC-based confusion and inverted confusion matrices (Fig S3A-B), our models
of interest exhibited robust recoverability in both 'down' and 'up' task settings. We note that model separability
was greatly improved when using the AIC relative to when using (inverted) confusion matrices that used the
Bayesian Information Criterion (BIC) [75], which over-penalised Q-asymm’s additional free parameter. Thus, we

used AIC as our approximation of model evidence.

Finally, to validate inferences about empirical parameters obtained from our model fitting procedure, we
simulated choice behaviour under our two key ‘winning’ models of interest, Q-asymm and Q-adapt, using the

best-fitting parameter settings estimated for each participant, and then re-fit these models to these generated
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datasets [29]. We then repeated the process while incrementally varying each of the data-generating parameters
over 10 evenly spaced values within the lower and upper bounds used for our model fitting procedure (see ‘Model
Fitting and Comparison’). In both task conditions and model types, the ‘true’, data-generating parameters strongly
correlated with their recovered counterparts (min r =0.50, max r = 0.90), and only weakly correlated with all other
recovered parameter types (min r =-0.29, max r = 0.13; Fig S5A-B). Likewise, we observed only weak correlations
among the recovered parameters themselves (min r = -0.22, max r = 0.07), indicating that our fitting procedure
did not introduce any ‘trading off’ among parameters, and thus further validating inferences drawn about these
parameters (Fig S4C) [29,76].
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Supporting Information

Fig S1. Predicted Tl learning curves under simulations of symmetric and asymmetric RL models. Same as Fig 2,
but simulated using empirical parameter estimates for Q-symm (upper panels) and Q-asymm (lower panels)
matching those observed by Ciranka et al. [5].

Fig S2. Value compression effects in human behaviour. Our model-agnostic measure of learning asymmetry —
i.e. the slope of the relationship between combined item value and accuracy on pre-changepoint Tl trials — was
significantly lower than 0, indicating value compression. In-text percentages refer to the percentage of
participants in each group whose asymmetry slope was below 0, thereby indicating those participants
designated as winner-biased (cf. Fig 4A).

Fig S3A-B. Model recovery analysis. Our three candidate models generally exhibited good identifiability both in
terms of p(fit/gen) (A) and p(gen|fit) (B). See Materials and Methods, ‘Model and Parameter Recovery’ for
details.

Fig S4A-B. Changepoint-induced changes in learning asymmetry are related to behavioural performance.
Among ‘down’ participants, pre- vs. post-changepoint differences in learning asymmetry estimated with Q-
asymm? were significantly negatively correlated with post-changepoint non-anchor Tl accuracy (A), and
positively correlated their tendency to correctly change their preference for the moved anchor item (i.e. i7; B). In
other words, participants in the ‘down’ group who appropriately adapted to the change in relational structure
exhibited a larger reduction in their winner-biased learning asymmetry. In contrast, these relationships were
non-significant among ‘up’ participants.

Fig S5A-B. Parameter recovery analysis. Our two winning models Q-asymm and Q-adapt exhibited strong
parameter recovery. In other words, in the parameter correlation matrix in B, simulated parameters (columns)
correlated strongly with their recovered counterparts (rows), resulting in strong correlation values along the
diagonal. In contrast, simulated parameters correlated weakly with each other recovered parameter type (i.e.
off-diagonal). In addition, we observed weak correlations among recovered parameters, as shown in C. See
Model and Parameter Recovery in Materials and Methods for details.
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