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Author Summary 18 

When reasoning about relationships between objects, events, or people, humans can readily use previous 19 

experiences to infer relations that they have never encountered before. For example, if Anna beats Bruce at 20 

tennis, and Bruce beats Clara, then one can predict that Anna will likely also beat Clara. Human learning in such 21 

‘transitive inference’ problems tends to be winner-biased – that is, upon observing Anna’s victory over Bruce, a 22 

spectator would be more likely to attribute this outcome to Anna’s skill than to Bruce’s lack thereof. However, in 23 

a constantly changing world whose comparative relations are rarely static, humans must also be able to infer how 24 

changes in the outcomes of certain comparisons bear on other relationships within a transitive hierarchy. 25 

Combining behavioural testing and computational modelling, we show that a learning strategy that preferentially 26 

focuses on the winners of comparisons induces greater flexibility for certain types of hierarchy changes than for 27 

others. In addition, we provide evidence that humans may dynamically adjust their degree of learning asymmetry 28 

according to the current strength of their beliefs about the relations under comparison. 29 

 30 

Abstract 31 

Humans and other animals can generalise from local to global relationships in a transitive manner. Recent research 32 

has shown that asymmetrically biased learning, where beliefs about only the winners (or losers) of local 33 

comparisons are updated, is well-suited for inferring relational structures from sparse feedback. However, less is 34 

known about how belief-updating biases intersect with humans’ capacity to adapt to changes in relational 35 

structure, where re-valuing an item may have downstream implications for inferential knowledge pertaining to 36 

unchanged items. We designed a transitive inference paradigm involving one of two possible changepoints for 37 

which an asymmetric (winner- or loser-biased) learning policy was more or less optimal. Participants (N=83) 38 

exhibited differential sensitivity to changes in relational structure: whereas participants readily learned that a 39 

hitherto low-ranking item increased its rank, moving a high-ranking item down the hierarchy impaired 40 

downstream inferential knowledge. Behaviour best captured by an adaptive reinforcement learning model which 41 

exhibited a predominantly winner-biased learning policy but also modulated its degree of asymmetry as a function 42 

of its choice preference strength. Our results indicate that asymmetric learning not only accounts for efficient 43 

inference of latent relational structures, but also for differences in the ease with which learners accommodate 44 

structural changes. 45 

 46 

Introduction 47 

Humans readily learn how items rank on a variety of latent scales, such as those pertaining to hedonic or economic 48 

value, or social influence. Such representations of rank permit novel inferences of indirectly related states or 49 

entities. For instance, knowing that A<B and B<C enables one to infer, through transitive inference (TI), that A<C. 50 

TI has been widely studied in humans, non-human primates, rats and birds alike [1–4]. Under TI learning regimes, 51 
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training trials offer participants trial-and-error feedback about pairwise comparisons between items of 52 

neighbouring rank, which must then be used to infer unseen test relations between non-neighbouring items. In 53 

requiring agents to use the outcomes of pairwise comparisons to update their estimates of the rankings within a 54 

linear set, TI paradigms lend themselves to the application of simple reinforcement learning (RL) frameworks that 55 

model the influence of choice feedback on the subjective value of the compared items. Recent work adopting this 56 

approach demonstrated that TI learning is characterised by, and indeed benefits from, an asymmetric policy under 57 

which either the winner (or the loser) of a pair is preferentially updated [5]. Specifically, this benefit emerged in 58 

simple RL models furnished with separable, or ‘asymmetric’ learning rates for updating winners and losers, with 59 

most participants displaying a bias towards updating winners. This cognitive distortion during inferential learning 60 

fits into a wider body of literature on human biases towards positive [6,7] or confirmatory feedback signals [8–61 

11]. 62 

 63 

The constantly changing nature of an agent’s environment necessitates that any capacity for relational learning 64 

must exhibit adaptability, while also ensuring robustness [12]. The learning dynamics underlying humans’ ability 65 

to adapt to volatile reward environments have been studied in tasks involving changepoints or reversals [13–15]. 66 

Likewise, sensory preconditioning paradigms have been used to investigate the conditions under which relational 67 

representations are retrospectively re-evaluated via relearning associations between rewarded and indirectly 68 

related stimuli, or through inference at the time of choice [16,17]. These studies have demonstrated humans’ 69 

ability to infer how changes in local reward feedback pertain to indirectly related stimuli, underscoring the utility 70 

of changepoint manipulations in probing inferential learning capabilities.  71 

 72 

Studying changepoints in larger relational structures allows one to investigate how agents rapidly modify existing 73 

knowledge in response to minimal new information [2,18]. Less is known, however, about how such ‘few-shot’ 74 

local relational changes impact downstream inferential knowledge, nor how this capacity to adapt to changes in 75 

relational structure intersects with well-documented belief-updating biases in humans. Consider a sports league 76 

where a spectator learns how the teams rank with respect to one another based on the outcomes of head-to-77 

head matches between them. Halfway through the season, the unexpected loss of the reigning champions against 78 

a  team sitting at the bottom of the hierarchy may be indicative of the former’s fall from grace, and/or the latter’s 79 

resurgence. Ascertaining which team’s ranking has changed will thus determine how much one needs to update 80 

one’s predictions about how this team will fare against others in the league, while ensuring minimal disruption to 81 

knowledge pertaining to the relations between teams whose performance remains unchanged (Fig 1A). 82 

Interestingly, a corollary of the asymmetric RL framework is that the ease with which such changes in relational 83 

structure are accommodated, and thus any resultant impact on downstream inferential knowledge, should vary 84 

as a function of the asymmetry in an agent’s learning policy (see Fig 1C and S1 for simulations). If humans are 85 

biased towards preferentially increasing their estimates of winners, then the sudden decline of the hitherto best 86 
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team to the bottom of the leaderboard should be less readily accommodated than the rapid ascendency of the 87 

worst team to the top of the table. The relative difficulty with which this former change in ground truth structure 88 

is learned would also, in turn, reduce the discriminability of mid-table teams whose rankings remain unchanged, 89 

and thus disrupt the agent’s inferential knowledge with respect to the middle of the transitive hierarchy.  90 

 91 

Accordingly, there is evidence to suggest that the preferential integration of positive reward prediction errors can 92 

lead to choice inertia when the best and worst options in a two-armed bandit are flipped [19–21]. Likewise, 93 

Fig 1. Experimental paradigm and model simulations. A) Example ‘cnarciness’ rankings of a set of seven items in an ordinal hierarchy. After 
three blocks, the ground truth structure changed in one of two possible ways: in the ‘down’ group (blue), the most cnarcy item i7 (here, the 
telephone) moved to the bottom of the hierarchy, whereas in the ‘up’ group (orange), the least cnarcy item i1 (here, the scarf) moved to 
the top of the hierarchy. B) On each trial, participants were asked to choose which of two items they believed to be the most cnarcy. Binary 
feedback was delivered on adjacent trials containing items neighbouring in rank (green), while TI comparisons between non-adjacent items 
offered no feedback (red). C) Simulated item value estimates ( ‘Q values’) under the symmetric agent Q-symm (top row) and the asymmetric 
agent Q-asymm (bottom row) for the ‘up’ and ‘down’ experimental conditions (left and right columns, respectively). Red shaded half of 
each panel represents the post-changepoint phase of the experiment. Whereas non-anchor item value estimates are equally discriminable 
following both changepoints under Q-symm’s symmetric learning policy, Q-asymm predicts impaired discriminability of item values in the 
‘down’ condition relative to the ‘up’ condition (cf. Fig S1). Models were simulated using parameter ranges consistent with participant 
learning asymmetries reported by Ciranka et al. [5]. 
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humans are more reluctant to revise their subjective beliefs about the quality of a deteriorating foraging 94 

environment, relative to an environment whose reward rate improves [22]. While these studies support the idea 95 

that positively biased agents are more sensitive to positive changes in the value of options and reward 96 

environments, the prediction that the biased reorganisation of relational knowledge should have a downstream 97 

impact on unchanged elements of a transitive hierarchy remains untested. Moreover, while these predictions are 98 

made under the assumption of a static degree of learning asymmetry, introducing a changepoint in a TI learning 99 

paradigm also allows one to explore whether learning asymmetries may dynamically adjust or even reverse in a 100 

task-dependent manner, a possibility for which empirical evidence in other learning regimes is mixed [23,24; but 101 

see 25].  102 

 103 

Here, we therefore sought to investigate whether biased learning policies confer different levels of (in-)flexibility 104 

to changes in an environment’s relational structure. Participants (N=83) performed a TI paradigm involving one of 105 

two possible changepoints for which a winner-biased learning policy was more or less optimal. In addition to 106 

replicating previously observed learning asymmetries in the pre-changepoint task phase, we found evidence 107 

supporting our model prediction that such biased learning strategies differentially advantage agents’ ability to 108 

accommodate directional shifts in the environment’s underlying relational structure. Computational modelling of 109 

behaviour further revealed that such differential sensitivity was best captured by an extension of our asymmetric 110 

RL model whose degree of learning rate asymmetry varied as a function of the strength of its choice preference. 111 

We thus provide a parsimonious account for how learning rate asymmetries may dynamically adapt to task 112 

conditions, unifying our present findings with previous research into belief-updating biases. 113 

 114 

Results 115 

Changepoint TI Paradigm 116 

Participants (N=83) performed a computerised task in which they were, on each trial, presented with two items 117 

drawn from a set of seven i1, i2,… i7, and instructed to choose the item that they thought was more ‘cnarcy’ than 118 

the other using a button press. The relative cnarciness of each item was established at the beginning of the 119 

experiment by randomly assigning a ground truth rank from 1-7 to each item, such that i1 and i7 represented the 120 

least and most cnarcy items respectively. On ‘adjacent’ trials comparing items with neighbouring ranks, 121 

participants received deterministic feedback about whether they had correctly/incorrectly chosen the more 122 

cnarcy item. In contrast, on ‘TI’ trials comparing non-neighbour items, participants did not receive any feedback. 123 

Thus, participants were required to use sparse feedback from pairwise comparisons between adjacently ranked 124 

items to infer the transitive hierarchy governing the item set (Fig 1A-B).  125 

 126 

Adjacent and TI trials were randomly interleaved within each of six blocks, allowing us to examine the evolution 127 

of TI over time. Critically, after the third block, a minimal change in the items’ hierarchy was introduced: in the 128 
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‘up’ group of participants (N=39), the hitherto lowest-ranking item i1 moved up the hierarchy to become the 129 

highest-ranking item, while in the ‘down’ group (N=44), the highest-ranking item i7 moved down to become the 130 

lowest-ranking item. In both groups, the relations between all other items remained exactly as they were before, 131 

such that the new ranking of item-IDs from lowest to highest could be represented as 7123456 in the ‘down’ 132 

group, and 2345671 in the ‘up’ group. Since participants only received choice feedback for adjacently ranked 133 

items, this change in the underlying ground truth only resulted in minor changes in the feedback received by each 134 

group. Specifically, on trials comparing the newly adjacent items i1 and i7, participants in both groups received 135 

new feedback consistent with i7<i1. The only difference between the two groups was in the two comparisons for 136 

which feedback was removed as a result of the rank change: 'down' participants no longer received feedback on 137 

trials comparing i6 vs. i7, whereas 'up' participants no longer received feedback on trials comparing i1 vs. i2, since 138 

these pairs of items were no longer adjacently ranked in each case. Thus, the objective changes in the underlying 139 

hierarchy could only possibly be inferred on the basis of two pieces of information: 1) the newly introduced i7<i1 140 

relation, 2) the persistence or omission of the i1<i2 or i6<i7 relation. 141 

 142 

Simulations 143 

Following Ciranka et al. [5], we simulated relational learning in our TI paradigm using simple RL models that 144 

updated the value (i.e. ‘cnarciness’) estimates Q of winning and losing items x and y, respectively, following choice 145 

feedback under a modified Rescorla-Wagner updating rule [26]: 146 

 147 

Eq. 1 148 

 149 

Eq. 2 150 

 151 

, where a+ and a- are the learning rates for winners and losers respectively. Separating these learning rates allowed 152 

the model to implement varying degrees of symmetry/asymmetry in its learning policy. We defined the symmetric 153 

model Q-symm as an agent for whom a+ = a-, meaning the agent increased and decreased its value estimates for 154 

winners and losers of each choice outcome respectively by equal amounts. In contrast, we defined the asymmetric 155 

model Q-asymm as an agent whose learning rates a+ and a- could freely vary. In the case where a+ > a-, the agent 156 

was ‘winner-biased’, disproportionately increasing its value estimate for a comparison’s winner relative to its 157 

loser, whereas the agent was ‘loser-biased’ if a+ < a-. 158 

 159 

Value updates were scaled by the relative difference between Qt(x) and Qt(y), as represented by the dt(x,y) term 160 

in Eqs. 1-2 (see Eq. 4 in Materials and Methods, ‘Behavioural Models’). We modelled the probability of choosing 161 

ix>iy as a sigmoid function of the difference between the estimated item values, scaled by a noise or ‘temperature’ 162 

parameter τ (see Eq. 5 in Materials and Methods, ‘Behavioural Models’). 163 
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We first present simulations of the symmetric and asymmetric RL agents Q-symm and Q-asymm, respectively, in 164 

order to derive model-based predictions for how humans should behave in our changepoint TI paradigm (Fig 1C 165 

and S1). We simulated model performance over a range of parameter values matching those previously estimated 166 

to fit human TI behaviour by Ciranka et al. [5], where participants tended to exhibit a winner-biased learning policy 167 

(i.e. a+ > a-) when fitted with Q-asymm. Preferentially updating winners in this way leads to compression of Q-168 

asymm’s latent value structure before the changepoint, such that pairs of higher valued items are less 169 

discriminable than lower valued items. This reduced sensitivity towards larger values is a signature of asymmetry 170 

in relational learning. In contrast, the symmetric agent Q-symm exhibits no such compression (for details, see [5]). 171 

 172 

Interestingly, Q-asymm’s asymmetric learning policy predicts a difference in how efficiently it should adapt to our 173 

changepoint manipulation in the ‘up’ condition relative to the ‘down’ condition (Fig 1C and S1). If learning is biased 174 

towards winners, the changepoint in the ‘up’ condition should be easily accommodated, since Q-asymm 175 

selectively and appropriately increases its value estimate for i1 without needing to update any other items. On the 176 

other hand, in the ‘down’ condition, Q-asymm’s initial tendency to increase its estimate for i1 over-inflates this 177 

item’s value, and underestimates i7’s decline in value. In contrast, Q-symm’s proportionate updating of winners 178 

and losers means that it will adapt to these two objective changes in the underlying ground truth with equal 179 

efficiency. Thus, if inferential learning is characterised by an asymmetric, winner-biased learning policy, then this 180 

yields the empirical prediction that humans should more efficiently adapt to the change in relational structure in 181 

the ‘up’ condition than in the ‘down’ condition. 182 

 183 

Value Compression 184 

Focusing first on participants’ pre-changepoint behaviour (that is, all trials preceding the first i7<i1 trial in the fourth 185 

block), we confirmed that participants not only learned the cnarciness relations between items of neighbouring 186 

rank, but also used the feedback from these trials to accomplish TI (Fig 2, leftmost column). Participants in both 187 

groups exhibited above-chance accuracy both on pre-changepoint trials involving adjacent items ('up': mean 188 

accuracy = 0.67 ± 0.01 SE, t(38) = 12.94, p < .001; 'down': mean accuracy = 0.65 ± 0.01 SE, t(43) = 10.35, p < .001), 189 

and on pre-changepoint TI trials ('up': mean accuracy = 0.73 ± 0.02 SE, t(38) = 13.22, p < .001; 'down': mean 190 

accuracy = 0.75 ± 0.01 SE, t(43) = 16.67, p < .001). In both groups, we also found evidence for the widely observed 191 

‘symbolic distance effect’ [27,28] in both pre-changepoint accuracy and reaction time (RT) data, such that greater 192 

ordinal distance between comparanda on TI trials was associated with higher accuracy ('up': β = 0.04, t(38) = 8.30, 193 

p < .001; 'down': β = 0.05, t(43) = 11.07, p < .001) and faster responses ('up': β = -0.03, t(38) = -4.11, p < .001; 194 

'down': β = -0.03, t(43) = -5.24, p < .001). 195 

 196 

We next examined the extent to which participants’ choice behaviour in the pre-changepoint period may have 197 

been reflective of a compressed latent value structure, a key signature of an asymmetric learning policy. Inspecting 198 

participants’ pairwise choice matrices (Fig 3A, left panels) showed evidence of value compression, such that lower- 199 
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200 

valued TI pairs (that is, pairs of items closer towards the top-left corner of the choice matrix) tended to be judged 201 

more accurately than higher-valued TI pairs (that is, pairs of items closer towards the bottom-right corner of the 202 

choice matrix). We quantified the slope of this compression effect using linear regression (Fig 4A and S2). 203 

Participants in both groups tended to exhibit asymmetry slopes significantly below 0, such that increases in 204 

combined pair value on TI trials were associated with a decline in accuracy ('up': mean β = -0.02 ± 0.01 SE, t(38) = 205 

-3.39, p < .001; 'down': mean β = -0.02 ± 0.01 SE, t(43) = -3.62, p < .001). This degree of asymmetry did not 206 

significantly differ between groups (t(81) = 0.10, p = .918). In line with previous work, we therefore found evidence 207 

that during the initial pre-changepoint phase, participants acquired a compressed value structure, consistent with 208 

an asymmetric learning strategy. 209 

 210 

Differential Impact of Changepoint on TI Performance 211 

Turning to post-changepoint behaviour, we examined how effectively participants accommodated the different 212 

shifts in the ranking of one of the anchor items (i.e. i1 or i7) while preserving their knowledge about the remaining 213 

items (Fig 2, leftmost column). To isolate the impact of each changepoint on downstream inferential knowledge, 214 

and to avoid any skewing effect of pre-changepoint preferences for the moved anchor items, we focused on 215 

Fig 2. TI accuracy over the course of experiment in humans and fitted models. Mean accuracy for TI pairs was calculated using a sliding 
window of 100 trials. Red shaded half of each panel represents the post-changepoint phase of the experiment. Dark blue, purple and pink 
colours respectively refer to low, medium, and high-valued TI comparisons, excluding anchors (see choice matrix in legend).  Humans 
(leftmost column) exhibited a differential impact of the changepoint on TI performance: whereas accuracy continued to improve in the ‘up’ 
group (upper leftmost panel), post-changepoint accuracy was disrupted in the ‘down’ group (lower leftmost panel). Simulating each 
candidate model using each participant’s best-fitting parameters revealed that whereas the asymmetric and adaptive models Q-asymm 
and Q-adapt (third and fourth columns, respectively) qualitatively reproduced this interaction effect, the symmetric model Q-symm 
performed equally well in both conditions. 
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 216 

comparisons involving non-anchor items whose rank position had not changed in either group (i.e. from i2 to i6). 217 

Post-changepoint non-anchor accuracy was significantly above chance in both groups for adjacent pairs ('up': 218 

mean accuracy = 0.80 ± 0.02 SE, t(38) = 12.10, p < .001; 'down': mean accuracy = 0.73 ± 0.03 SE, t(43) = 8.48, p < 219 

.001), and for TI pairs ('up': mean accuracy = 0.74 ± 0.03 SE, t(38) = 7.03, p < .001; 'down': mean accuracy = 0.70 ± 220 

0.03 SE, t(43) = 6.37, p < .001). To evaluate how accuracy developed from one phase of the experiment to the 221 

next, and whether these effects differed between groups, we conducted a series of 2 x 2 mixed ANOVAs with 222 

changepoint (pre vs. post) as a within-subjects factor, and direction (‘up’ vs. ‘down’) as a between-subjects factor. 223 

For adjacent pairs, we observed a significant main effect of changepoint (F(1,81) = 83.13, p < .001), reflecting a 224 

significant increase in accuracy from the first to the second half of the experiment (pre-changepoint: mean 225 

accuracy = 0.62 ± 0.01 SE; post-changepoint: mean accuracy = 0.76 ± 0.02 SE).  Adjacent trial accuracy did not 226 

significantly differ between direction groups across the whole experiment ('up': mean accuracy = 0.72 ± 0.02 SE;  227 

Fig 3A-B. Choice matrices for humans (left panels) and the best-fitting model Q-adapt (right panels). A) Mean probability of choosing the 
correct item for each possible pairing, as represented by the colour-bar. Top row of panels displays pre-changepoint data collapsed across 
‘up’ and ‘down’ participants, while the bottom row of panels splits post-changepoint data by group. B) Pre vs. post-changepoint change in 
P(x<y), i.e. the difference in preference for item y (matrix rows) over item x (matrix columns) from one changepoint to the next (note the 
change in metric compared to A). Lighter colours indicate that the agent’s preference for item y over x has increased, while darker colours 
indicate that it has decreased. Colour-bar value range was narrowed between -0.12 and 0.12 to improve legibility of differences among 
non-anchor pairs. 
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'down': mean accuracy = 0.67 ± 0.02 SE; F(1,81) = 3.87, p = .053), nor was there a significant changepoint x 228 

direction interaction effect (F(1,81) = 1.25, p = .268). Repeating this 2 x 2 ANOVA on TI accuracy, we likewise 229 

observed a main effect of changepoint (F(1,81) = 20.00, p < .001), which was similarly driven by an improvement 230 

in TI accuracy from the pre- to the post-changepoint phase of the experiment (pre-changepoint: mean accuracy = 231 

0.65 ± 0.02 SE; post-changepoint: mean accuracy = 0.72 ± 0.02 SE). While the main effect of direction on TI trial 232 

accuracy was non-significant ('up': mean accuracy = 0.68 ± 0.02 SE; 'down': mean accuracy = 0.69 ± 0.03 SE; F(1,81) 233 

< 0.01, p = .950), we observed a significant changepoint x direction interaction (F(1,81) = 5.87, p = .018). 234 

Bonferroni-corrected post-hoc comparisons revealed that while participants in the 'up' group exhibited a 235 

significant improvement in TI accuracy from the pre- to the post-changepoint phases (pre-changepoint: mean 236 

accuracy = 0.63 ± 0.03 SE; post-changepoint: mean accuracy = 0.74 ± 0.03 SE; t(38) = 5.19, p < .001), participants 237 

Fig 4A-D. Model-agnostic and model-estimated learning asymmetry. A) The model-agnostic measure of participants’ learning asymmetry 
is the slope of the relationship between TI accuracy and combined pair value on all pre-changepoint trials (see also Fig S2). Participants 
with negative slopes are designated as winner-biased (see in-text legend for percentages). B) In contrast, the Q-asymm-based asymmetry 
measure refers to the normalised difference in best-fitting learning rates, where -1, 0 and +1 values for A indicate full loser bias, symmetry, 
and full winner bias respectively. Whereas ‘up’ participants tended to be strongly winner-biased when Q-asymm was fit to trials from the 
whole experiment (i.e. strong left-skew in right panel), ‘down’ participants were estimated to be more evenly split between winner- and 
loser-biased (i.e. bimodal distribution in left panel). The proportion of participants designated as winner- or loser-biased in the ‘down’ 
group according to this model-based metric therefore substantially deviated from that according to the model-agnostic metric in A (see in-
plot percentages). C) In contrast, Q-asymm models fit to pre-changepoint trials were predominantly winner-biased in both groups. D) We 
fit Q-asymm2 to participant data, which was equivalent to Q-asymm, except that its two learning rates reset after the changepoint. 
Calculating the difference between the model’s pre- and post-changepoint asymmetry index A revealed a tendency to become less winner-
biased in the ‘down’ group (left panel). 
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in the 'down' group showed no such effect (pre-changepoint: mean accuracy = 0.67 ± 0.02 SE; post-changepoint: 238 

mean accuracy = 0.70 ± 0.03 SE; t(43) = 1.51, p = .277).   239 

 240 

To inspect any differences in the development in TI accuracy after the changepoint more closely, we divided the 241 

post-changepoint phase in half and performed a further 2 x 2 ANOVA on non-anchor TI accuracy, but this time 242 

using these two halves of the post-changepoint data as the within-subjects factor, as opposed to pre- vs. post-243 

changepoint. We observed no significant main effect of this factor (first half: mean accuracy = 0.71 ± 0.02 SE; 244 

second half: mean accuracy = 0.73 ± 0.02 SE; F(1,81) = 1.99, p = .162). However, the direction x post-changepoint 245 

half interaction effect was significant (F(1,81) = 6.39, p = .013). Bonferroni-corrected post-hoc comparisons 246 

revealed that this was similarly driven by a significant improvement in TI accuracy among the ‘up’ group from the 247 

first half of the post-changepoint phase to the next (first half: mean accuracy = 0.70 ± 0.04 SE; second half: mean 248 

accuracy = 0.77 ± 0.03 SE; t(38) = 3.03, p = .009), and a non-significant difference between the post-changepoint 249 

halves among ‘down’ participants (first half: mean accuracy = 0.71 ± 0.03 SE; second half: mean accuracy = 0.70 ± 250 

0.04 SE; t(43) = 0.67, p > .999). Together, this indicates that the changepoint manipulation differentially impacted 251 

participants’ ability to infer transitive relations among unchanged items: while participants continued to improve 252 

non-anchor TI accuracy when i1 moved to the top of the hierarchy, non-anchor TI learning was relatively stunted 253 

in participants for whom i7 moved to the bottom of the hierarchy. 254 

 255 

We next investigated the extent to which participants appropriately switched their choice preferences for 256 

whichever anchor item had moved to the other end of the hierarchy after the changepoint - i.e. P(choose i1) for 257 

'up' participants, and P(choose i7) for 'down' participants (note: we excluded i1 vs. i7 trials from this analysis in 258 

order to isolate any changes in preference for these moved anchors with respect to the non-anchor items). In 'up' 259 

participants, we observed a significant increase in participants’ preference for the moved anchor i1 after the 260 

changepoint (pre-changepoint: mean = 0.15 ± 0.02 SE; post-changepoint: mean = 0.57 ± 0.06 SE; t(38) = 6.57, p < 261 

.001), and likewise a significant decrease in 'down' participants’ tendency to choose i7 after the changepoint (pre-262 

changepoint: mean = 0.70 ± 0.03 SE; post-changepoint: mean = 0.38 ± 0.05 SE; t(43) = -7.49, p < .001). The absolute 263 

difference in choice preferences for the moved anchor before and after the changepoint did not significantly differ 264 

between the two groups ('up': mean difference 0.41 ± 0.06 SE; 'down': mean difference = 0.32 ± 0.04 SE; t(81) = 265 

1.19, p = .238). Thus, both groups of participants appeared equally capable of correctly re-positioning whichever 266 

anchor item had moved to the other end of the hierarchy. This may suggest a certain degree of symmetry in 267 

updating the anchor items themselves after the changepoint, alongside the more general asymmetric updating of 268 

all other items, a possibility that we return to later in the Results section. 269 

 270 
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Model Asymmetry 271 

The foregoing behavioural analyses suggest that participants exhibited value compression effects and differential 272 

sensitivity to changes in relational structure consistent with a winner-biased belief-updating policy. Next, we fitted 273 

our symmetric and asymmetric RL models (Q-symm and Q-asymm) to the human experiment data, using the 274 

Akaike Information Criterion (AIC) to compare relative model fits (see Model and Parameter Recovery in Materials 275 

and Methods and Fig S3A-B) [29]. In accordance with Bayesian model selection approaches, we also calculated 276 

the protected exceedance probability (pxp) associated with each model, which quantifies the probability that a 277 

given model is the most frequent data-generating model of the entire set of candidates [30]. In both groups of 278 

participants, Q-asymm provided a better fit to participants’ behaviour than Q-symm, as confirmed using Wilcoxon 279 

signed-rank tests of AICs ('down': mean Q-asymm AIC = 349.81 ± 10.46 SE; mean Q-symm AIC = 366.12 ± 9.71 SE; 280 

Z = 5.22, p < .001; 'up': mean Q-asymm AIC = 339.26 ± 12.48 SE; mean Q-symm AIC = 363.53 ± 10.99 SE; Z = 5.25, 281 

p < .001) (Fig 5A). Comparison of pxps likewise revealed, in both groups of participants, a clear advantage for Q-282 

asymm over Q-symm (‘up’: Q-asymm pxp > 0.99, Q-symm pxp < 0.01; ‘down’: Q-asymm pxp > 0.99, Q-symm pxp 283 

Fig 5A-B. Model comparison for each candidate model, within each task condition. A) Lower AIC values indicate better fit of the model to 
the behavioural data. Dashed lines indicate quartiles of the data, while asterisks indicate a significant difference between AIC values for a 
given pair of models (i.e. p < .05; Wilcoxon signed-rank tests). B) Higher pxp values (bars) indicate greater probability that a given model is 
the most frequent data-generating model in the studied population, while diamonds indicate the estimated frequency of each model. 
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< 0.01). These initial model comparison analyses therefore not only replicate previously observed learning 284 

asymmetries, but also suggest that the differential impact of the changepoint in our modified TI setting is likewise 285 

best captured by the asymmetric learning agent Q-asymm. 286 

 287 

We next examined the model-estimated asymmetry index A of each participant under the Q-asymm model, where 288 

values of A closer to 1 or -1 indicate greater winner or loser biases respectively, and A = 0 indicates perfect 289 

symmetry between learning rates (see Eq 3. in Materials and Methods, ‘Behavioural Models’). As in previous work 290 

[5], values of A tended to be left-skewed in the 'up' group, indicating a strongly winner-biased learning asymmetry 291 

(Fig 4B, right panel). In addition to this majority of 'up' participants who were estimated to be winner-biased 292 

(N=32/39), there was also a small sub-group of participants for whom A was lower than 0, and hence who were 293 

estimated to be loser-biased under the best-fitting Q-asymm model (N=7/39). In contrast, A values for 'down' 294 

participants exhibited a more starkly bimodal distribution, such that participants were more evenly split between 295 

being either strongly winner-biased (N=20/44) or loser-biased (N=24/44) (Fig 4B, left panel). Indeed, non-296 

parametric statistical comparisons revealed significantly lower values of A in 'down' participants compared to 'up' 297 

participants ('down': mean A = -0.02 ± 0.12 SE; 'up': mean A = 0.62 ± 0.10 SE; Mann-Whitney-U-test: U = 1269.00, 298 

p < .001). In contrast, when fitting Q-asymm to participants’ pre-changepoint choices only, we observed no 299 

significant difference in model-estimated asymmetry ('down': mean A = 0.34 ± 0.11 SE; 'up': mean A = 0.38 ± 0.11 300 

SE; Mann-Whitney-U-test: U = 876.00, p = 0.873). The A values obtained from these pre-changepoint fits instead 301 

tended to be similarly left-skewed in both groups, providing estimates for the number of winner and loser-biased 302 

participants ('up': winner-biased N=28, loser-biased N=11; 'down': winner-biased N=31, loser-biased N=13) that 303 

more closely matched those obtained under our model-agnostic asymmetry slope metric reported earlier (cf. Fig 304 

4A and S2). This suggests that while participants’ pre-changepoint behaviour may be best explained by a winner-305 

biased learning policy, our model fitting procedure may have biased Q-asymm-derived learning rates towards 306 

capturing post-changepoint behaviour, leading to inflated estimates of loser learning rates. We address this 307 

possibility in the following section. 308 

 309 

Our original hypothesis was that a differential impact of the changepoint on TI performance would arise as a direct 310 

consequence of the agent’s asymmetric learning policy – that is, the relative ease (or difficulty) in accommodating 311 

the 'up' (or ‘down’) relational change should be a function of each agent’s tendency to preferentially update 312 

winners or losers, up until the changepoint is reached. Such hypotheses were therefore derived under the 313 

assumption of a static degree of asymmetry, whereby each agent’s preferential updating of winners (or losers) 314 

remained constant over the course of the task, even in the face of the changepoint. However, it is also important 315 

to consider the possibility that such asymmetries may have varied over time as learning progressed, or as a 316 

function of objective changes in the task (namely, the changepoint). To evaluate the possibility that participants’ 317 

degree of learning asymmetry may have differed before and after the changepoint, we fitted a variant of Q-asymm 318 

equipped with two separate pairs of learning rates for winners and losers for each experimental phase, i.e. a+
pre, 319 

a-
pre and a+

post, a-
post. We then calculated the asymmetry indices Apre and Apost of this model Q-asymm2 using each 320 

of these pairs of fitted learning rates (Fig 4D). Participants in the ‘up’ group showed a winner-biased learning 321 
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asymmetry in the pre-changepoint phase that did not significantly differ between changepoints (mean Apre = 0.42 322 

± 0.11 SE; mean Apost = 0.51 ± 0.10 SE; Wilcoxon signed-rank test: Z = 0.35, p = .727). However, participants in the 323 

‘down’ group underwent a significant reduction in their winner-biased learning asymmetry after the changepoint 324 

(mean Apre = 0.37 ± 0.10 SE; mean Apost = -0.02 ± 0.12 SE; Wilcoxon signed-rank test: Z = 2.04, p = .041).  325 

 326 

Interestingly, the ‘down’ participants for whom this change in learning asymmetry was most pronounced tended 327 

to be those who exhibited relatively high post-changepoint performance. For instance, participants’ difference 328 

between Apost and Apre under Q-asymm2 was significantly negatively correlated with their post-changepoint non-329 

anchor TI accuracy, and hence with their capacity to respond to the changepoint while minimising disruption to 330 

the unchanged transitive hierarchy (r = -0.73, p < .001; Fig S4A). Likewise, this reduction in learning asymmetry 331 

after the changepoint was positively correlated with participants’ pre- versus post-changepoint change in 332 

preference for the moved anchor i7, such that participants who correctly reduced their preference for i7 tended 333 

to show a greater reduction in their winner-bias after the changepoint (r = 0.38, p = .010; Fig S4B). In contrast, no 334 

such significant relationship held for 'up' participants, neither with respect to their post-changepoint non-anchor 335 

TI accuracy (r = 0.22, p = .181), nor their change in preference for the moved anchor i1 (r = 0.03, p = .846). These 336 

findings lend further support to the idea that although the changepoint experienced by ‘down’ participants 337 

disrupted TI learning at the group level, well-performing participants were nonetheless capable of leveraging an 338 

adaptive reduction in winner-biased asymmetry to respond more appropriately to the change in ground truth. 339 

 340 

Adaptive Asymmetry  341 

The foregoing model comparison analyses indicate that while Q-asymm provides a good overall fit to both groups 342 

of participants’ behaviour, especially with respect to pre-changepoint trials, it is limited in its ability to account for 343 

well-performing participants who initially exhibited value compression, but who were nonetheless capable of 344 

responding appropriately to the downward change in relational structure. We therefore sought to explore how 345 

Q-asymm might be modified to make its learning policy flexible enough to capture the behaviour of such 346 

participants. 347 

 348 

Inspiration for how differing degrees of asymmetry may arise as a function of some relevant task feature came 349 

from Ciranka et al.’s [5] finding that the sparsity of feedback appears to play a role in modulating learning policy 350 

asymmetry. Specifically, they observed that whereas participants tended to exhibit asymmetric belief-updating 351 

policies in the standard partial feedback TI paradigm, performance in a task offering full feedback on all 352 

comparisons, as opposed to just comparisons between neighbours, was best characterised by symmetric learning 353 

rates, and hence best fit by the symmetric model Q-symm. Such feedback regimes facilitate learning because they 354 

offer participants the opportunity to learn the cnarciness relations between non-neighbouring items directly. This 355 

also provides many more opportunities for the agent to confirm or revise their prior beliefs about the ordinal 356 
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positions of the item set, which may lend itself to the application of symmetric updates to both compared items 357 

on a given trial. In contrast, in partial feedback settings where participants are required to ‘build’ a representation 358 

of the transitive hierarchy purely endogenously, the paucity of feedback that verifies or falsifies the agent’s beliefs 359 

about the ranking of items may necessitate asymmetrically prioritising the update of just one of the two compared 360 

items on a given comparison until a clearer representation of the item hierarchy has been formed. 361 

 362 

We therefore formalised an adaptive agent Q-adapt, whose degree of asymmetry varied on a trial-by-trial basis 363 

as a function of the strength or uncertainty of the agent’s belief regarding the cnarciness relation between the 364 

two compared items. The rationale was that trials for which the agent’s belief about the two items is less certain 365 

may induce them to (asymmetrically) allocate a larger proportion of the overall update to one of the items. In 366 

contrast, on trials where the agent has a stronger belief, the receipt of feedback should provide a clear indication 367 

that this prior belief needs to be further reinforced or reversed via a more symmetrically distributed updating of 368 

both items. Drawing on the information theoretic notion of choice entropy, we derived an asymmetry variable λ 369 

which reflects the absolute strength of belief about the current comparison, and controls the degree to which the 370 

agent’s ‘base’ learning rate resource a0 is shared between a+ and a- (Fig 6A; see Eqs. 6-8 in Materials and Methods, 371 

‘Behavioural Models’). For example, assuming an agent with a general tendency towards winner-biased updates, 372 

when λ is 1 (indicating a weak preference), all of a0 will be allocated to a+, whereas a- is set to 0. As λ approaches 373 

0 (indicating a stronger preference), however, a0 is more evenly spread across both learning rates, meaning a+ and 374 

Fig 6A-C. Illustration of how Q-adapt modulates its degree of learning asymmetry. A) The asymmetry modulator  λ is given by a quadratic 
function of the agent’s preference strength – that is, the probability that they will choose ix>iy on a given trial. The steepness of the 
asymmetry modulator function – that is, the degree to which λ is sensitive to changes in choice probability – is modulated by ω. B) 
Preference strength is a logistic choice function of the difference in value estimates for the compared items, the slope of which is 
determined by the temperature parameter τ. C) Assuming a constant ω (here, ω=1), then, given the relationship between λ and choice 
preference in A, which is itself dependent on τ, this means that the extent to which a difference in value estimates results in a smaller value 
of λ, and hence a more symmetric learning update, is at least partially shaped by each agent’s value for τ, and hence by their decision noise. 
In practice, Q-adapt’s learning dynamics can be roughly described as follows: at the beginning of the experiment, item values are not 
distinguishable, causing the agent to update items asymmetrically. As learning progresses and stronger preferences are formed, the agent 
begins to utilise a more symmetric update. Lower noise agents will exhibit a stronger tendency in this direction, meaning that, upon receipt 
of the i7<i1 feedback, they will more appropriately update these items (and indeed items on following trials) in a symmetric fashion, and 
thus resolve the ‘down’ changepoint with less difficulty. In contrast, higher noise agents will tend to update more asymmetrically across all 
value differences, leading to inflexible adaptation to the ‘down’ changepoint among those who are winner-biased. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2024. ; https://doi.org/10.1101/2024.07.03.601844doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601844
http://creativecommons.org/licenses/by/4.0/


16 

 

a- become more symmetrical. Thus, whereas Q-asymm defines a+ and a- as two free parameters, Q-adapt has a 375 

single base learning rate parameter a0 that is adaptively spread between a+ and a- as a function of λ on a trial-by-376 

trial basis. 377 

 378 

In dynamically distributing learning updates in this way, Q-adapt models participants as tending to be more 379 

asymmetric in their updates towards the beginning of the experiment while they are still learning the transitive 380 

hierarchy, thus mirroring Q-asymm’s asymmetric policy. As learning progresses, and hence stronger (and, ideally, 381 

correct) beliefs about item relations are formed, learning updates are distributed more symmetrically (note that 382 

as the agent’s expectations about item relations become more accurate, this will in turn reduce the relative 383 

difference between predicted item values, resulting in a concomitant reduction in learning, as per Eq. 4). Once 384 

the changepoint is reached and the agent observes that i7<i1 – i.e. an outcome that contradicts the agent’s strong 385 

prior belief that i1<i7 –, the symmetric nature of the quadratic function allows for an updating of both Q(i1) and 386 

Q(i7) that is itself more symmetric, albeit still winner-biased. This is consistent with our finding that participants 387 

of both groups were equally capable of repositioning the moved anchor in each case, despite the differential 388 

impact of the changepoint on downstream TI performance.  389 

 390 

The extent to which an agent may tend towards such symmetric updates is not only shaped by an additional 391 

sensitivity parameter ω (see Eq. 6), but also depends on how readily the agent forms strong preferences. This is 392 

itself determined by several interacting factors, including the rate at which the agent updates items upon receipt 393 

of new feedback (i.e. the learning rate), and the behavioural variability arising from the decision process (i.e. the 394 

temperature parameter τ of the logistic choice function; see Eq. 5 in Materials and Methods, ‘Behavioural 395 

Models’). In the present case, well-performing agents, such as those with lower values of τ will tend to more 396 

readily translate differences in value estimates into stronger choice preferences (Fig 6B), and hence will be more 397 

inclined to distribute more symmetric updates as learning progresses via lower values of λ (Fig 6C). In contrast, 398 

noisier agents will tend towards more asymmetric updates, limiting their ability to adapt to the change in 399 

relational structure occurring in the 'down' group. Thus, in modulating learning asymmetry as a function of choice 400 

preference, which is itself shaped by internal learning and noise parameters, the present implementation of Q-401 

adapt allows agents to a) initially exhibit asymmetric learning while choice preferences are being acquired, and 402 

(crucially), b) appropriately deploy more symmetric learning later on in the learning phase under ‘well-performing’ 403 

learning and choice parameterisations. 404 

 405 

We fitted this modified model Q-adapt to participants’ choices over the whole experiment, and repeated the 406 

Bayesian model selection steps to calculate model pxps, given the addition of this new candidate model (Fig 5A-407 

B). Among ‘up’ participants, the adaptive model Q-adapt did not significantly differ from Q-asymm in terms of AIC 408 

(Q-adapt: mean AIC = 339.20 ± 12.65 SE; Q-asymm: mean AIC = 339.26 ± 12.48 SE; Wilcoxon signed-rank test of 409 

AICs: Z = 0.27, p = .791), and did not outperform Q-asymm in terms of pxp (Q-adapt: pxp = 0.45; Q-asymm: pxp = 410 

0.54; Q-symm: pxp < 0.01). Among ‘down’ participants, Q-adapt yielded a slight but non-significant improvement 411 
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in terms of AIC (Q-adapt: mean AIC = 348.37 ± 10.60 SE; Q-asymm: mean AIC = 349.81 ± 10.46 SE; Wilcoxon signed-412 

rank test of AICs: Z = 0.81, p = .421), but clearly outperformed its static counterparts in terms of pxp (Q-adapt: pxp 413 

= 0.93; Q-asymm: pxp = 0.07; Q-symm: pxp < 0.01). Together, this indicates a narrow advantage for Q-adapt over 414 

Q-asymm in terms of model fit, particularly with respect to ‘down’ participants.  415 

 416 

As a final model validation step, we simulated Q-adapt (along with all other models) using the best-fitting empirical 417 

parameters to verify whether this model was capable of qualitatively reproducing the key behavioural effects 418 

observed in our empirical dataset [29,31]. We first examined the consistency of the human and model-estimated 419 

value compression effects. In line with the descriptive results (cf. Fig 3A, upper left panel), Q-adapt’s pre-420 

changepoint TI performance was characterised by a compressed value structure, with asymmetry slopes 421 

significantly below 0 ('up': mean β = -0.02 ± 0.01 SE, t(38) = -3.89, p < .001; 'down': mean β = -0.01 ± 0.01 SE, t(43) 422 

= -2.44, p = .019). Identifying participants as winner- or loser-biased according to the sign of their best-fitting a0 423 

value, Q-adapt likewise yielded estimates for the proportion of participants falling into each category that were 424 

more closely in line with those gleaned from the sign of participants’ asymmetry slope (number of winner-biased 425 

participants under Q-adapt: 'down': 25/44 participants; 'up': 33/39 participants; cf. Fig 4B and S2). This stands in 426 

contrast to Q-asymm, which failed to reproduce a significantly negative asymmetry slope among 'down' 427 

participants ('up': mean β = -0.02 ± 0.01 SE, t(38) = -4.03, p < .001; 'down': mean β = -0.01 ± 0.01 SE, t(43) = -1.44, 428 

p = .157), while also underestimating the proportion of winner-biased participants according to its model-based 429 

asymmetry index A, as reported earlier.  430 

 431 

Turning to model behaviour as a function of the changepoint, Q-adapt’s TI performance was differentially 432 

impacted by the change in underlying ground truth rankings, as in our behavioural data (cf. Fig 3B, left panels): 433 

non-anchor TI accuracy was relatively stunted in the ‘down’ group after the changepoint, whereas performance 434 

continued to improve in the ‘up’ group (Fig 3B, right panels). Interestingly, the exact pattern of TI disruption in 435 

‘down’ participants deviated from that predicted by Q-adapt (and indeed Q-asymm); while our models predicted 436 

a more pronounced decline in lower-valued comparisons, the detrimental impact of the ‘down’ changepoint 437 

tended to be more strongly reflected in higher-valued comparisons (Fig 2, lower-leftmost and lower-rightmost 438 

panels). Nonetheless, as in our behavioural data, the broad pattern of a differential impact of the changepoint on 439 

inferential knowledge was supported by a significant changepoint x direction interaction effect on Q-adapt’s non-440 

anchor TI accuracy (F(1,81) = 4.17, p = .044). This was driven by a significant improvement in TI accuracy from pre- 441 

to post-changepoint for ‘up’ participants modelled by Q-adapt (pre-changepoint: mean accuracy = 0.67 ± 0.02 SE; 442 

post-changepoint: mean accuracy = 0.75 ± 0.03 SE; t(38) = 6.56, p < .001), in contrast to a far less pronounced, 443 

albeit still significant, increase in TI accuracy between changepoints for ‘down’ participants modelled by Q-adapt 444 

(pre-changepoint: mean accuracy = 0.68 ± 0.02 SE; post-changepoint: mean accuracy = 0.72 ± 0.02 SE; t(43) = 2.43, 445 

p = 0.039).  446 

 447 
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Thus, considering not only our models’ predictive performance, as approximated by model evidence metrics, but 448 

also their ability to generate patterns of behaviour resembling those observed in humans, Q-adapt emerged as 449 

the model that best captured human TI performance. 450 

 451 

Discussion 452 

TI is an instance of humans’ and other animals’ impressive ability to utilise knowledge gained about local relations 453 

to infer global, unseen relationships. By introducing different changes in relational structure, we demonstrated 454 

that winner-biased belief-updating confers different levels of flexibility to adapt to such changes in ground truth 455 

orderings: whereas relocating the worst item ‘up’ to the top of the hierarchy is readily accommodated, relocating 456 

the best item ‘down’ to the bottom has a more disruptive impact on downstream inferential knowledge. 457 

 458 

Participants’ reduction in sensitivity to pre-changepoint TI comparisons with increasing combined value replicates 459 

compression effects previously observed in inferential learning settings [5]. Besides further underscoring the 460 

utility of using an RL framework to capture TI learning dynamics [4,5,32], we extend these findings by observing 461 

differences in adaptability to changes in relational structure that are consistent with an asymmetric, rather than 462 

symmetric, learning policy. Our findings lend further credence to the hypothesis that belief-updating asymmetries 463 

extend beyond two-armed bandit and foraging task contexts [10]. We note that the specific form of positivity bias 464 

in the present study is somewhat different to those investigated in the wider literature. In other RL paradigms, 465 

‘positivity’ refers to the preferential update of values or options upon receipt of a positive (as opposed to negative) 466 

reward prediction error (RPE). Here, in contrast, the bias lies in the disproportionate updating of the winner and 467 

loser of a given binary comparison, independent of the sign of the RPE.  468 

 469 

Our paradigm’s minimal change in underlying ground truth structure halfway through the task was reflected in a 470 

slight change in feedback that only subtly differed between groups: both sets of participants were given a single 471 

new piece of feedback (i.e. i7<i1), and only differed in the single comparison pair that no longer offered feedback 472 

(i.e. i1 vs. i2 for 'up' participants, and i6 vs. i7 for 'down' participants). To model the updating of item value estimates 473 

in response to choice feedback, we assumed a relatively simple RL framework that only updated its cached value 474 

estimates for the currently presented pairs of items on receipt of feedback. Indeed, the utility of this ‘model-free’ 475 

approach in capturing human TI behaviour demonstrates that such inferential capabilities can proceed without 476 

necessarily invoking any abstract knowledge of the structural regularities entailed by particular relations (i.e. 477 

knowing that A<C because A<B and B<C). Nonetheless, it remains an intriguing possibility that humans could 478 

resolve the ambiguity initially induced by the changepoint by learning from trials from which they receive no 479 

feedback.  In the present case, for example, a participant in the ‘up’ group might have learned to expect feedback, 480 

given the presentation of i1 vs. i2. The subsequent, unexpected omission of this feedback after the changepoint 481 

could induce them to update their value estimates for the presently compared items, and/or indeed items at the 482 
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other end of the hierarchy, since it could be seen as diagnostic as to which of the underlying changes in ground 483 

truth explains the recently observed and highly surprising outcome i7<i1. This capacity to infer how the receipt or 484 

omission of feedback on a given comparison bears on items elsewhere in the hierarchy would therefore require a 485 

structural model of how the full set of items are related, potentially drawing on model-based approaches 486 

furnished with the ability to mentally simulate the outcomes of pairwise comparisons through replay [33–35]. 487 

 488 

The compression of participants’ learned value structures constitutes an instance of a more generalised distortion 489 

widely observed across psychophysical, numerical and economic decision-making contexts, whereby the 490 

discriminability between comparanda decreases with increasing stimulus intensity or magnitude [36–40]. Here, 491 

we propose that such compressed representations may emerge from an asymmetric learning policy (see also [5]). 492 

Nonetheless, we by no means argue that belief-updating biases are the only source of these ubiquitously observed 493 

psychometric distortions. Indeed, we note that the reduction in discriminability owing to increased overall value 494 

estimates across the hierarchy is not inconsistent with the view that compressed judgements of magnitude may 495 

arise, for example, from the mental organisation of numerical information on a power or logarithmic scale [38,39]. 496 

One potential way of disentangling the relative contributions of asymmetric policies and non-linear ‘Weber 497 

scaling’ of internal representations in the relational learning domain would be to more closely examine 498 

participants’ individual differences in the sign of the asymmetric learning bias: if the behavioural compression 499 

effects exhibited by winner-biased participants were equivalent to the anti-compression effects of loser-biased 500 

participants with equal absolute learning rate asymmetries, then this would further emphasise the role of 501 

asymmetric learning policies in the emergence of value compression. Relatedly, observing the opposite 502 

changepoint x direction interaction effect observed in our experiment, but among a predominantly loser-biased 503 

population – that is, disruption to inferential knowledge among the ‘up’ group, rather than the ‘down’ group – 504 

would lend further support to the idea that it is the sign of the learning asymmetry that is responsible for any (in-505 

)efficient changepoint adaptation effects. Given the limited number of loser-biased participants in the present 506 

study, we leave this question for future work containing larger and more diverse samples of participants. 507 

 508 

Our behavioural predictions were derived from Q-asymm, an RL agent that scaled its updates of winners and 509 

losers of pairwise comparisons according to asymmetric learning rates that remain fixed throughout the 510 

experiment. While this model significantly outperformed its symmetric counterpart Q-symm, it nonetheless 511 

underestimated the proportion of winner-biased participants. This raised the possibility that well-performing 512 

participants in the 'down' group were capable of both adapting to the change in relational structure, while also 513 

exhibiting pre-changepoint compression effects consistent with an initially winner-biased learning policy. We 514 

therefore introduced Q-adapt, a model whose trial-by-trial learning rate asymmetry varied as a function of the 515 

strength of its choice preference, thereby enabling well-performing participants to appropriately deploy more 516 

symmetric updating once the changepoint was reached. Existing models of changepoint adaptation typically 517 

possess the ability to separate the ‘aleatoric’ uncertainty pertaining to expected variability in an outcome from 518 

the ‘epistemic’ uncertainty arising from unexpected changes in a volatile reward environment [12–14]. 519 

Changepoints cause these models to increase their learning rates until the period of high epistemic uncertainty is 520 
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resolved. Q-adapt lacks this capacity to track periods of volatility to modulate its overall learning rates, instead 521 

using the choice uncertainty on a given trial, as given by an entropy-like function, to directly modulate its degree 522 

of asymmetry. 523 

 524 

Q-adapt parsimoniously unifies recent findings that asymmetric and symmetric learning policies each best explain 525 

human behaviour in, and indeed are optimal for, partial and full feedback TI regimes respectively [5]. We propose 526 

that the degree of belief-updating asymmetry flexibly varies according to the strength of an agent’s prior belief, 527 

and hence the informativeness, or entropy, of any resulting feedback. The formation of choice preferences from 528 

differences in value estimates is itself shaped by two model parameters: the amount of learning (as controlled by 529 

the base learning rate a0), and the decision noise with which learned item values are transformed into choices (as 530 

controlled by the temperature parameter τ; Fig 6B-C). The role of the latter parameter in asymmetry modulation  531 

dovetails with empirical work suggesting that magnitude compression effects and related psychometric 532 

distortions vary as a function of decision noise or task load [41–44]. Indeed, sensitivity to uncertainty has often 533 

been incorporated into RL frameworks in various guises, and has been suggested as guiding the use of different 534 

behavioural controllers in humans [45], the flexible combination of reward information in primates [46], and the 535 

volatility-induced adaptation of learning rates via meta-learning in rodents [47]. In the present case, the concept 536 

of uncertainty may more appropriately pertain to the agent’s prior confidence about the relative difference 537 

between item values at the time of choice. For example, if an agent has a stronger preference for Ix<Iy, and thus a 538 

less noisy representation of the relative values of these items, then the receipt of feedback that either confirms 539 

or disconfirms this belief may more unambiguously be incorporated into the agent’s value estimates in the form 540 

of a more symmetric update. In contrast, uncertain beliefs about less discriminable items may be associated with 541 

greater noise or working memory load, making it more appropriate to focus one’s update on just one item. 542 

Although our exploratory model comparison was intended to formalise the idea that stronger preferences should 543 

induce more symmetrical updates, there are several other task-related or internal variables that may covary with 544 

the strength of an agent’s preference, including confidence or surprise, the expected value of the chosen or 545 

unchosen option, the RPE magnitude, or the balance of exploration versus exploitation etc.. Future work could 546 

disentangle these candidate task features or decision-making variables that may give rise to fluctuating levels of 547 

asymmetry. 548 

 549 

Theoretical accounts have proposed that the degree of learning rate asymmetry is optimally adapted to the 550 

richness of a reward environment, such that positive learning rate asymmetries maximise rewards in ‘poor’ 551 

environments, while negative asymmetries maximise rewards in ‘rich’ environments [11,48]. Asymmetric 552 

updating in response to relational feedback can be thought of as optimal in a similar way; under sparse feedback, 553 

prioritising the update of just one of the two compared items magnifies relative differences among item estimates 554 

during initial learning, and is therefore optimal for the ‘building’ of a value structure in which value estimates are 555 

clearly separated [5]. A corollary of these theoretical frameworks is that learning biases should dynamically invert 556 

as a function of the amount of reward available, although empirical evidence for such inversion is mixed [23,24; 557 

although see 25]. Our adaptive framework explores the possibility that the relative balance of positive and 558 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 6, 2024. ; https://doi.org/10.1101/2024.07.03.601844doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601844
http://creativecommons.org/licenses/by/4.0/


21 

 

negative learning rates may dynamically narrow over time, rather than reverse. In any case, the mixed empirical 559 

evidence for adaptive asymmetries may be due to different operationalisations of reward richness. For instance, 560 

the above studies manipulated the average reward rate by controlling the probability that a reward would be 561 

received upon selection of one of two bandits. In contrast, the proportion of comparisons offering binary choice 562 

feedback, relative to those offering no feedback, did not change over the course of our TI changepoint task, nor 563 

did it vary between groups. Thus, in the present study, it is the trial-by-trial variability in choice preference 564 

strength, rather than the distribution of rewards, that is hypothesised to have an impact on learning rate 565 

asymmetry adaptation. 566 

 567 

Aside from the RL framework deployed here, one can alternatively examine the TI changepoint problem under a 568 

Bayesian inference scheme, as has widely been done in the context of TI [3,32,49], and indeed structure learning 569 

more generally [50–52]. Under this broad class of frameworks, our TI changepoint scenario could be viewed as a 570 

problem of resolving feedback ambiguity: the new observation that i7<i1 is, at first, equally consistent with a 571 

change in i1’s ranking as it is with a change in i7’s ranking, meaning the agent must track the likelihood of 572 

subsequent choice feedback under each of these hypotheses about the new underlying ground truth structure. A 573 

wealth of literature has likewise researched the role of episodic processes, likely implemented in the 574 

hippocampus, in enabling inference and generalisation [53,54]. More specifically, TI may be supported by 575 

‘retrieval-based’ inference mechanisms that reactivate and recombine pattern-separated representations of 576 

specific relations [35,55], or via a more ‘encoding-based’ recruitment of inferred relationships via overlapping 577 

structural representations [56,57]. Since the present study focused on how the reorganisation of relational 578 

knowledge intersects with widely observed biases in value learning, we did not incorporate into our models the 579 

possibility that transitive learning might also involve episodic memory processes [5,35]. Elucidating whether and 580 

how such episodic processes ‘feed into’ the caching of item values would therefore be a promising avenue for 581 

future work.  582 

 583 

Several lines of research have connected elementary belief-updating biases with research in clinical settings. While 584 

positivity biases may provide an adaptive means of promoting positive well-being [58] or motivation [6], 585 

converging empirical and theoretical work has also implicated more pessimistic learning rates in a range symptoms 586 

of Major Depressive Disorder [59–61]. Our finding that belief-updating biases confer different levels of flexibility 587 

to changes in relational structure raises interesting questions about whether or not such differences in 588 

adaptability also cut across clinical populations. It would be particularly interesting to consider such asymmetries 589 

in changepoint adaptability in the context of risk-seeking or gambling behaviour, since they predict differences in 590 

the influence of various outcomes – e.g. a change in a previously low-performing bet versus a change in a 591 

previously high-performing bet – on reward expectations pertaining to unchanged bets. While our paradigm 592 

contained fully deterministic relational feedback, and therefore did not incorporate any risk or outcome variance 593 

per se, evidence suggests that the degree of learning asymmetry shapes the relationship between the 594 

environment’s reward variability and an individual’s tendency to seek or avoid risks [62–64]. Given our hypothesis 595 

that asymmetry dynamically varies as a function of preference strength, which in turn is influenced by an agent’s 596 
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decision noise, it would be worthwhile to consider the role of belief-updating biases in value compression and 597 

changepoint adaptability effects under different levels of outcome variance (i.e. via probabilistic relational 598 

feedback), and how this relationship might be moderated by clinically relevant symptoms or traits. 599 

 600 

Our RL agents constituted descriptive models of how biased learning policies give rise to subjective value 601 

distortions and differences in behavioural adaptability. While we make no causal or mechanistic claims about the 602 

dynamics of relational learning in the brain, research centring on neuromodulatory activity in the basal ganglia 603 

and brainstem may offer plausible accounts for how updates may be asymmetrically scaled during RL. 604 

Subpopulations of striatal neurons with distinct excitatory and inhibitory properties (i.e. D1 and D2 receptors, 605 

respectively) may provide a means of differential engagement of dopamine-mediated learning as a function of 606 

positive or negative prediction errors [65–67]. Likewise, empirical work has implicated serotonergic systems 607 

operating over behaviourally relevant timescales in the ability to track and adapt to changes in the volatility of 608 

reward environments [47,68]. It would therefore be interesting to consider how such neural accounts extend 609 

beyond bandit tasks to structure learning settings that more explicitly engage generalisation and inference 610 

processes. In addition, our investigation of differences in adaptability to changes in underlying relational structure 611 

ties into research exploring how neural and artificial systems reconfigure knowledge at the representational level 612 

in response to new information. Evidence suggests that the linking together of transitive hierarchies is mirrored 613 

in the joining of neural manifolds in fronto-parietal regions and deep neural networks alike [18]. Examining how 614 

the differences in relational adaptability observed in the present study might be recapitulated in a neural network 615 

may in turn yield neuroscientific hypotheses about how representational geometries may be (in-)efficiently 616 

reorganised in response to changes in environmental structure. 617 

  618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

 627 

 628 
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Materials and Methods 629 

Participants 630 

Participants (N=150) aged between 18-40 years were recruited online via Prolific Academic (74 female; mean age 631 

27 ± 5.27 years SE). After confirming their written informed consent, participants were randomly allocated to one 632 

of two groups: the ‘up’ group (N=76; 37 female; mean age = 27.14 ± 5.12 years SE), or the ‘down’ group (N=74; 37 633 

female; mean age = 26.85 ± 5.41 years SE). Participants received compensation of £6.00, plus a performance-634 

dependent bonus of £2. The study was approved by the Ethics Committee of the Max Planck Institute for Human 635 

Development. 636 

 637 

Since our study focused on the impact of the changepoint manipulation on learned knowledge, we implemented 638 

a performance-related inclusion criterion. Participants in both groups experienced the same trial structure before 639 

the changepoint was reached (albeit with different item allocations and trial sequences). We therefore used a 640 

binomial test to compute a performance threshold above which the likelihood that participants were performing 641 

at chance on pre-changepoint trials was 0.01 (i.e. following the criteria used by Ciranka et al. [5]), thus avoiding a 642 

confound by the experimental manipulation of interest. One additional participant was excluded for exhibiting a 643 

high proportion of missed responses (>60% of 322 trials). After the application of these criteria, N=83 participants 644 

(36 female; mean age = 26.90 ± 5.34 years SE) remained for analysis ('up': N=39; 'down': N=44). Restricting the 645 

application of this criterion to the first half of the experiment while participants were still learning to perform the 646 

task amounted to a somewhat conservative approach, in turn resulting in a relatively high proportion of 647 

participants being excluded. Nonetheless, we note that when we applied a more liberal threshold for inclusion (a 648 

= 0.1), which left N=103 participants ('up': N=53; 'down': N=50), our core findings – i.e. a differential impact of the 649 

changepoint on downstream TI performance, best explained by our adaptive asymmetry model Q-adapt – 650 

remained unchanged. 651 

 652 

Stimuli, Task and Procedure 653 

The behavioural task was an adapted version of the TI paradigm used in Experiment 4 of Ciranka et al.’s study [5], 654 

and was programmed in PsychoPy 2022.2.2 [69]. Seven images of everyday objects and animals drawn from the 655 

BOSS database [70] were randomly assigned a ground truth rank from 1-7 at the beginning of the experiment for 656 

each participant. Participants were told that their task was to learn about how the items related to one another 657 

with respect to how ‘cnarcy’ they are. They were informed that whether or not an item was more or less cnarcy 658 

than another was unrelated to any characteristics that these items have in real life. Rather, participants could only 659 

learn about cnarciness through the feedback provided on each trial of the experiment. 660 

 661 
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On each trial, following a 0.5s fixation cross, two items were simultaneously presented on the left and right side 662 

of the screen on a white background for up to 2.5s. Participants were instructed to select whichever item they 663 

thought was more cnarcy than the other as accurately and as quickly as possible using the left or right arrow key. 664 

They were informed that, on some trials, they would receive on-screen feedback (“correct”/”incorrect”) about 665 

whether or not they had correctly chosen the cnarcier item. Unbeknownst to participants, the delivery of feedback 666 

was determined by the relative positions of the two items in the underlying cnarciness hierarchy that was 667 

established at the start of the experiment: if the two items were neighbouring in their rank (‘adjacent trials’, e.g. 668 

i3 vs. i4), then participants received feedback (“correct” or “incorrect”) about their choice for 0.5s, whereas if the 669 

items were non-neighbours (‘TI trials’, e.g. i3 vs. i5), then no feedback was provided. If no selection was made 670 

within 2.5s, a ‘missed response’ was recorded. Trials were separated by an inter-trial interval of 0.6s. 671 

 672 

Using a set of seven items resulted in 21 possible stimulus pairings. Within each block, the six adjacent pairs were 673 

repeated four times, while TI pairs were repeated twice. This gave rise to a total of 54 trials per block, of which 24 674 

provided feedback and 30 provided no feedback. The serial order of trials was pseudo-randomised, with left and 675 

right positions counterbalanced within each block.  676 

 677 

The entire experiment consisted of six blocks, each followed by a short attention check. At the start of the 678 

experiment and before each block, participants were reminded that not all items would stay as cnarcy for the 679 

entire experiment. Rather, on some blocks, certain items may or (may not) become more or less cnarcy, meaning 680 

their relations to other items (as reflected in choice feedback) may change. In reality, such a change was only 681 

introduced in the fourth block, such that from this block onwards, the ground truth item hierarchy changed in a 682 

manner determined by the group to which participants had been assigned. In the ‘up’ group, the hitherto lowest-683 

ranking item i1 moved 'up' the hierarchy to become the highest-ranking item, whereas in the ‘down’ group, the 684 

hitherto highest-ranking item i7 moved 'down' the hierarchy to become the lowest-ranking item. Given that choice 685 

feedback continued to only be delivered on trials comparing items of neighbouring rank, such changes in ground 686 

truth structure resulted in the following minimal changes to the feedback received by each group: 1) participants 687 

in both groups now received feedback informing them that i7<i1, 2) participants in the 'up' group now no longer 688 

received feedback that i1<i2, and 3) participants in the 'down' group now no longer received feedback that i6<i7. 689 

Thus, the changepoint meant that both groups learned about a single new relation, and only differed in the 690 

relation for which choice feedback was retained or withdrawn.  691 

 692 

After the final block, participants performed three short tasks to test their explicit knowledge of the item 693 

hierarchy. First, using the mouse to drag and drop items, participants were asked to arrange the items according 694 

to how cnarcy they thought they were by the end of the experiment. Next, they were asked to click on whichever 695 

items (if any) they believed had changed how cnarcy they were at any point in the experiment. Finally, participants 696 

were given the opportunity to enter, using the keyboard, any comments they wanted to share on, for example, 697 

how they performed the task, the nature of the feedback received, or how difficult they thought the task was. 698 
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While we do not analyse this post-task data here, it can nonetheless be freely accessed alongside the rest of 699 

behavioural data (see Data Availability). 700 

 701 

Behavioural Models 702 

We assume a simple Rescorla-Wagner learning rule to model how agents update their value estimates of items in 703 

response to relational feedback: 704 

 705 

Eq. 1 706 

 707 

Eq. 2 708 

 709 

, where Qt is the estimated item value at time t, and a+ and a- are the learning rates for the winning and losing 710 

items x and y respectively. For the symmetric agent Q-symm, a+ = a-, such that these learning rates are modelled 711 

as a single free parameter. In contrast, for the asymmetric agent Q-asymm, a+ and a- can freely vary. This allowed 712 

us to obtain each participant’s model-estimated asymmetry index A, calculated as the normalised difference 713 

between best-fitting learning rates under Q-asymm: 714 

 715 

Eq. 3 716 

 717 

In the learning equations 1-2, dt(x,y) represents the relative difference between Qt(x) and Qt(y), i.e.: 718 

 719 

Eq. 4 720 

 721 

, where η is a scaling factor. This formalises the assumption that value updates scale with the difference between 722 

estimated item values. For instance, if an agent observes that ix>iy, this outcome should only induce a small change 723 

in value estimates for these items if the agent had already learned to expect this outcome (i.e. if Q(x) >> Q(y)). In 724 

contrast, observing that ix<iy would be highly surprising, given the agent’s existing beliefs about the relative values 725 

of these items, thus demanding a stronger update in the relevant value estimates. Incorporating such relational 726 

difference-weighting of value updates is necessary for Q-symm and Q-asymm to accomplish TI for non-anchor 727 

items (i.e. those of intermediate rank) [5]. We note that, depending on the value of the scaling factor η, the 728 

inclusion of the relative difference term dt can ‘overflow’ the bounds (i.e. 1 and -1) of the Rescorla-Wagner rule in 729 

Eqs. 1-2 – that is, the term that is added to Q(x) in Eq. 1 or subtracted from Q(y) in Eq 2. may end up being negative 730 

or positive, respectively. In such cases, the estimate of the winner would therefore decrease, and/or the estimate 731 
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of the loser would increase. In order to prevent such edge cases, we therefore apply a positive rectifier function 732 

to the winner update and a negative rectifier function to the loser update, such that any negative winner updates 733 

or positive loser updates are clipped at 0. 734 

 735 

Finally, we used a logistic choice function to define the probability of choosing ix>iy based on the difference 736 

between estimated item values: 737 

 738 

Eq. 5 739 

 740 

, where τ is the temperature parameter determining the shape of the sigmoid function, and thus the degree of 741 

noise in choices based on item value differences. 742 

 743 

The learning rates a+ and a- remain static for Q-symm and Q-asymm. In contrast, the adaptive asymmetry Q-adapt 744 

is capable of modulating the degree to which learning updates are shared between a given comparison’s winner 745 

and loser on a trial-by-trial basis. On adjacent trials, we calculate an asymmetry modulator λ, bound between 0 746 

and 1, as a quadratic function of the strength of the agent’s prior belief about how items x and y are related upon 747 

receipt of choice feedback: 748 

 749 

Eq. 6 750 

 751 

The value of λ is minimal, causing more symmetric updating, when an agent’s prior belief is strong and thus clearly 752 

supported or contradicted by the receipt of binary feedback (i.e. when p(x<y) approaches 1 or 0), whereas it is 753 

maximal, causing more asymmetric updating, when the agent has no preference (i.e. when p(x>y) = 0.5). ω is an 754 

additional sensitivity parameter bound between 0 and 1 controlling the shape of the quadratic asymmetry 755 

modulator function (Fig 6A). This determines how readily an agent adapts their degree of learning rate asymmetry 756 

as a function of the strength of their choice preference, effectively implementing a quadratic function that can be 757 

shallower or steeper depending on the value of ω. When ω is 0, the agent’s asymmetry is insensitive to changes 758 

in belief strength, such that λ=1 (i.e. full asymmetric updating) for all choice probabilities. When ω is 1, the Eq. 6 759 

becomes roughly equivalent to a choice entropy function (cf. Eq. 9). (Note: best-fitting values for ω were bimodally 760 

distributed around 0 and 1 (i.e. corresponding to no adaptability and maximal adaptability of learning asymmetry, 761 

respectively), and did not significantly differ between groups (‘up’: mean ω = 0.37 ± 0.06 SE; ‘down’: mean ω = 762 

0.47 ± 0.06 SE; Mann-Whitney U-test: U = 664.0, p = .077). This indicates that participants in both groups could be 763 

broadly divided into those whose learning asymmetry was or was not sensitive to changes in choice preference 764 

strength). 765 
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 766 

The λ term can then be used to distribute the agent’s base learning rate a0 across at
+ and at

- according to the 767 

following linear equations: 768 

 769 

Eq. 7 770 

 771 

 772 

Eq. 8 773 

 774 

 775 

Since we allowed a0 to take on negative values, the inclusion of the rightmost term in Eqs. 7 and 8 enabled agents 776 

to vary in terms of whether their distribution of a0 across a+ and a-
 was winner-biased (i.e. a0 > 0, and hence at

+>at
-777 

) or loser-biased (i.e. a0 < 0, and hence a+<a-). Note that we assume that agents cannot reverse their bias for the 778 

winners or losers of comparisons – for instance, for a winner-biased participant fit with a0 > 0, at
+ can only be 779 

greater or equal to at
-. This is consistent with recent empirical work finding no evidence for an adaptive reversal 780 

of the sign of humans’ learning asymmetries [23,24; but see 25]. 781 

We also considered an alternative version to Q-adapt in which the asymmetry modulator λ is simply an entropy 782 

function of the choice preference strength, such that Eq. 6 is replaced by the following: 783 

 784 

Eq. 9 785 

 786 

However, fitting this model to participant data revealed a significantly worse fit relative to the original ‘quadratic’ 787 

variant of Q-adapt described in Eq. 6 (‘quadratic’ Q-adapt: mean AIC = 344.06 ± 8.14 SE; ‘entropy’ Q-adapt: mean 788 

AIC = 348.11 ± 7.71 SE; Wilcoxon signed-rank test of AICs: Z = 2.29, p = .022). Given this inferior predictive 789 

performance for the ‘entropy’ model variant of Q-adapt, we excluded it from our formal model comparison. 790 

 791 

Model Fitting and Comparison 792 

We estimated model parameters by minimising the log-likelihood of each model, given each participant’s single-793 

trial responses. We used Scipy’s differential evolution method  [71,72] over 500 iterations with the following lower 794 

and upper parameter bounds: a+/a-: (0;0.5); a0: (-0.5;0.5); η: (0;10); τ: (0;1). From the resulting log-likelihood 795 

values under these best-fitting parameter estimates, we computed AIC values as an approximation of model 796 

evidence, where lower AIC indicates better goodness of fit, while penalising for model complexity [73]: 797 
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 798 

Eq. 10 799 

 800 

This amounts to the likelihood of a participant’s choice data D over the trials of interest, given a particular model 801 

M and its best-fitting parameters , plus a penalty term k corresponding to the number of free parameters. AIC 802 

values were in turn used to quantify the protected exceedance probability (pxp) associated with each competing 803 

model using the Variational Bayesian Analysis toolbox in MATLAB [74]. pxp values amount to the probability that 804 

a given model fits participants’ data better than all other competing models, and hence is the most frequent data-805 

generating model in the studied population. In contrast to the exceedance probability metric, the pxp additionally 806 

accounts for the null hypothesis that there is no difference in the frequencies of each model type [30]. 807 

 808 

Model and Parameter Recovery 809 

An important prerequisite for comparing models fitted to empirical data is that they are identifiable – that is, such 810 

models should behave in ways that renders them distinguishable under the selected model evidence metric [29]. 811 

To validate our model comparison approach, we first took each model’s best-fitting parameters for each of the 83 812 

participants, and used these to generate 10 experimental runs of synthetic (binomial) choice data on each 813 

participant’s set of trial sequences. We then fitted each model to the generated data and evaluated how often 814 

each model provided the best fit. The resulting confusion matrix thus provides a measure of the conditional 815 

probability that a model fits the data best, given the true generative model: p(fit|gen). In turn, this allows one to 816 

‘invert’ the confusion matrix according to Bayes rule, under the assumption of a uniform prior over all models: 817 

 818 

Eq. 11 819 

 820 

In quantifying the probability that the data were generated by a specific model, given that this model provided 821 

the best fit to the generated data, the inverted confusion matrix helpfully complements the model recovery 822 

procedure. As can be observed in the AIC-based confusion and inverted confusion matrices (Fig S3A-B), our models 823 

of interest exhibited robust recoverability in both 'down' and 'up' task settings. We note that model separability 824 

was greatly improved when using the AIC relative to when using (inverted) confusion matrices that used the 825 

Bayesian Information Criterion (BIC) [75], which over-penalised Q-asymm’s additional free parameter. Thus, we 826 

used AIC as our approximation of model evidence. 827 

 828 

Finally, to validate inferences about empirical parameters obtained from our model fitting procedure, we 829 

simulated choice behaviour under our two key ‘winning’ models of interest, Q-asymm and Q-adapt, using the 830 

best-fitting parameter settings estimated for each participant, and then re-fit these models to these generated 831 
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datasets [29]. We then repeated the process while incrementally varying each of the data-generating parameters 832 

over 10 evenly spaced values within the lower and upper bounds used for our model fitting procedure (see ‘Model 833 

Fitting and Comparison’). In both task conditions and model types, the ‘true’, data-generating parameters strongly 834 

correlated with their recovered counterparts (min r = 0.50, max r = 0.90), and only weakly correlated with all other 835 

recovered parameter types (min r = -0.29, max r = 0.13; Fig S5A-B). Likewise, we observed only weak correlations 836 

among the recovered parameters themselves (min r = -0.22, max r = 0.07), indicating that our fitting procedure 837 

did not introduce any ‘trading off’ among parameters, and thus further validating inferences drawn about these 838 

parameters (Fig S4C) [29,76]. 839 

 840 
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Supporting Information  1028 

Fig S1. Predicted TI learning curves under simulations of symmetric and asymmetric RL models. Same as Fig 2, 1029 

but simulated using empirical parameter estimates for Q-symm (upper panels) and Q-asymm (lower panels) 1030 

matching those observed by Ciranka et al. [5]. 1031 

 1032 

Fig S2. Value compression effects in human behaviour. Our model-agnostic measure of learning asymmetry – 1033 

i.e. the slope of the relationship between combined item value and accuracy on pre-changepoint TI trials – was 1034 

significantly lower than 0, indicating value compression. In-text percentages refer to the percentage of 1035 

participants in each group whose asymmetry slope was below 0, thereby indicating those participants 1036 

designated as winner-biased (cf. Fig 4A).   1037 

 1038 

Fig S3A-B. Model recovery analysis. Our three candidate models generally exhibited good identifiability both in 1039 

terms of p(fit|gen) (A) and p(gen|fit) (B). See Materials and Methods, ‘Model and Parameter Recovery’ for 1040 

details. 1041 

 1042 

Fig S4A-B. Changepoint-induced changes in learning asymmetry are related to behavioural performance. 1043 
Among ‘down’ participants, pre- vs. post-changepoint differences in learning asymmetry estimated with Q-1044 
asymm2 were significantly negatively correlated with post-changepoint non-anchor TI accuracy (A), and 1045 
positively correlated their tendency to correctly change their preference for the moved anchor item (i.e. i7; B). In 1046 
other words, participants in the ‘down’ group who appropriately adapted to the change in relational structure 1047 
exhibited a larger reduction in their winner-biased learning asymmetry. In contrast, these relationships were 1048 
non-significant among ‘up’ participants. 1049 

 1050 

Fig S5A-B. Parameter recovery analysis. Our two winning models Q-asymm and Q-adapt exhibited strong 1051 

parameter recovery. In other words, in the parameter correlation matrix in B, simulated parameters (columns) 1052 

correlated strongly with their recovered counterparts (rows), resulting in strong correlation values along the 1053 

diagonal. In contrast, simulated parameters correlated weakly with each other recovered parameter type (i.e. 1054 

off-diagonal). In addition, we observed weak correlations among recovered parameters, as shown in C. See 1055 

Model and Parameter Recovery in Materials and Methods for details. 1056 
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